Abstract:
An RF signal generator wirelessly transferring power to a wireless device includes, in part, a multitude of generating elements generating a multitude of RF signals transmitted by a multitude of antennas, a wireless signal receiver, and a control unit controlling the phases and/or amplitudes of the RF signals in accordance with a signal received by the receiver. The signal received by the receiver includes, in part, information representative of the amount of RF power the first wireless device receives. The RF signal generator further includes, in part, a detector detecting an RF signal caused by scattering or reflection of the RF signal transmitted by the antennas. The control unit further controls the phase and/or amplitude of the RF signals in accordance with the signal detected by the detector.
Abstract:
A power bank includes, in part, a rechargeable battery, a wireless power recovery unit adapted to receive power wirelessly, a battery charging circuit adapted to deliver the power recovered by the power recovery unit to the rechargeable battery, an output interface, and a voltage reconditioning circuit adapted to supply power from the rechargeable battery to the output interface for delivery to an external device. The wireless power recovery unit may include one or more of a multitude of photodiodes adapted to convert a coherent optical signal to electrical power, an acoustic transducer adapted to convert acoustic waves to an electrical power, an inductive coupling circuit adapted to convert time varying magnetic flux to electrical power, and an RF power recovery unit adapted to convert an RF signal to electrical power.
Abstract:
A space-based solar power station, a power generating satellite module and/or a method for collecting solar radiation and transmitting power generated using electrical current produced therefrom is provided. Each solar power station includes a plurality of satellite modules. The plurality of satellite modules each include a plurality of modular power generation tiles including a photovoltaic solar radiation collector, a power transmitter and associated control electronics. The power transmitters can be coordinated as a phased array and the power generated by the phased array is transmitted to one or more power receivers to achieve remote wireless power generation and delivery. Each satellite module may be formed of a compactable structure capable of reducing the payload area required to deliver the satellite module to an orbital formation within the space-based solar power station.
Abstract:
A method of generating a DC power from incident RF waves, includes, in part, measuring the amount of power being received by a device generating the DC power, and controlling the phases of the RF waves being transmitted by a multitude of RF transmitters in accordance with the measured power. A programmable test load is optionally used at the device to measure the received power. The device optionally includes, an antenna, an RF-to-DC converter to generate the DC power, an impedance matching/transformation circuit, and an RF load/matching circuit.
Abstract:
Many embodiments of the invention include stacked power amplifier configurations that include control circuitry for sensing the operational characteristics of the power amplifiers and adjusting the current drawn by one or more of the power amplifiers to prevent any of the power amplifiers from experiencing over voltage stresses and/or to increase the operational efficiency of the power amplifiers.
Abstract:
A space-based solar power station, a power generating satellite module and/or a method for collecting solar radiation and transmitting power generated using electrical current produced therefrom is provided. Each solar power station includes a plurality of satellite modules. The plurality of satellite modules each include a plurality of modular power generation tiles including a photovoltaic solar radiation collector, a power transmitter and associated control electronics. The power transmitters can be coordinated as a phased array and the power generated by the phased array is transmitted to one or more power receivers to achieve remote wireless power generation and delivery. Each satellite module may be formed of a compactable structure capable of reducing the payload area required to deliver the satellite module to an orbital formation within the space-based solar power station.