Abstract:
Multi-zoned synergized-platinum group metals (SPGM) catalysts with significant catalytic capabilities are disclosed. The multi-zoned SPGM catalysts are produced according to catalyst configurations including OC layers of ultra-low PGM loadings, alone or in combination with a base metal oxide, which are deposited onto either mixtures of doped ZrO2 and oxygen storage materials (OSM) or OSM alone. Further, the multi-zoned SPGM catalysts further include zoned impregnation layers with PGM, alone or in combination with Ba loadings. Additionally, three-zoned SPGM catalysts are produced including front and back zone catalysts that include binary spinel oxide compositions. Conversion performance of the aged SPGM catalysts and an aged PGM-based OEM catalyst are tested employing TWC low perturbation isothermal oscillating, isothermal steady-state sweep, and light-off test methodologies. Test results confirm the SPGM catalysts including ultra-low PGM loadings and spinel-based ZPGM WC layer are capable of providing significant conversion performance that is comparable to high PGM-based OEM catalyst.
Abstract:
Sulfur-resistant synergized platinum group metals (SPGM) catalysts with significant oxidation capabilities are disclosed. Catalytic layers of SPGM catalyst samples are produced using conventional synthesis techniques to build a washcoat layer completely or substantially free of PGM material. The SPGM catalyst includes a washcoat layer comprising YMnO3 perovskite and an overcoat layer including a Pt composition deposited on a plurality of support oxides with total PGM loading of about 5 g/ft3. Resistance to sulfur poisoning and catalytic stability is observed under 1.3 gS/L condition to assess the influence that selected support oxides have on the DOC performance of the SPGM catalysts. The results indicate SPGM catalysts produced to include a layer of low amount of PGM catalyst material deposited on a plurality of support oxides added to a layer of ZPGM catalyst material are capable of providing significant improvements in sulfur resistance of SPGM catalyst systems.
Abstract:
Variations of ZPGM catalyst material compositions including doped Cu—Mn spinel supported on doped zirconia support oxide are disclosed. The disclosed ZPGM catalyst compositions include a small substitution of Ni within the A-site or B-site cation of a Cu—Mn spinel supported on doped zirconia support oxide, and produced by the incipient wetness (IW) methodology. Bulk powder ZPGM catalyst compositions are subjected to XRD analyses to determine the spinel phase formation and stability. Additionally, bulk powder ZPGM catalyst compositions are subjected to a steady-state isothermal sweep test to determine NO, CO, and THC conversion. The ZPGM catalyst material compositions including Ni-doped Cu—Mn spinel supported on doped zirconia support oxide exhibit improved levels in NO and CO conversions, which can be employed in ZPGM catalysts for a plurality of TWC applications, thereby leading to a more effective utilization of ZPGM catalyst materials with high thermal and chemical stability in TWC products.
Abstract:
Zero-PGM (ZPGM) catalyst materials including pseudo-brookite compositions for use in diesel oxidation catalyst (DOC) applications are disclosed. The disclosed doped pseudo-brookite compositions include A-site partially doped pseudo-brookite compositions, such as, Sr-doped and Ce-doped pseudo-brookite compositions, as well as B-site partially doped pseudo-brookite compositions, such as, Fe-doped, Co-doped, Ni-doped, and Ti-doped pseudo-brookite compositions. The disclosed doped pseudo-brookite compositions, including calcination at various temperatures, are subjected to a DOC standard light-off (LO) test methodology to assess/verify catalyst activity as well as to determine the effect of the use of a dopant in an A-site cation or a B-site cation within a pseudo-brookite composition. The disclosed doped pseudo-brookite compositions exhibit higher NO oxidation catalyst activities when compared to bulk powder pseudo-brookite, thereby indicating improved thermal stability and catalyst activity when using a dopant in an A-site cation or in a B-site cation within a pseudo-brookite composition.
Abstract:
The present disclosure describes zero-platinum group metals (ZPGM) material compositions including binary Cu—Mn spinel oxide powders that possess stable reduction/oxidation (redox) reversibility useful for TWC and oxygen storage material (OSM) applications. The redox behavior of Cu—Mn spinel oxide powders is analyzed under oxidation-reduction environments to determine spinel structure stability. The XRD, TPR and XPS analyses confirm the redox stability and reversibility of the Cu—Mn spinel oxide.
Abstract:
The present disclosure describes support oxides, including include Niobium Oxide, which are employed in three-way catalytic (TWC) systems. Disclosed herein are TWC sample systems that are configured to include a substrate and one or more of a washcoat layer, an impregnation layer, and/or an overcoat layer. The disclosed one or more of washcoat layer and/or overcoat layer are formed using a slurry that includes an oxide mixture and an Oxygen Storage Material. The disclosed oxide mixtures include niobium oxide (Nb2O5), zirconia, and alumina. Further, other disclosed oxide mixtures additionally include NiO.
Abstract translation:本公开内容描述了用于三元催化(TWC)系统的载体氧化物,包括包括氧化铌。 本文公开了被配置为包括基底和一个或多个修补基面涂层,浸渍层和/或外涂层的TWC样品系统。 使用包括氧化物混合物和氧气存储材料的浆料形成所公开的一种或多种修补基面涂层和/或外涂层。 公开的氧化物混合物包括氧化铌(Nb 2 O 5),氧化锆和氧化铝。 此外,其它公开的氧化物混合物还包括NiO。
Abstract:
Spinels having a general formula of AB2O4, where A and B are a transition metal but not the same transition metal are disclosed. Spinel and spinel compositions of the application are useful in various applications and methods as further described.
Abstract translation:公开了具有通式AB 2 O 4的尖晶石,其中A和B是过渡金属,但不是相同的过渡金属。 应用的尖晶石和尖晶石组合物可用于进一步描述的各种应用和方法中。
Abstract:
The effect of aging temperature on oxygen storage materials (OSM) substantially free from platinum group (PGM) and rare earth (RE) metals is disclosed. Samples of ZPGM-ZRE metals OSM, hydrothermally aged at a plurality of high temperatures are found to have significantly high oxygen storage capacity (OSC) and phase stability than conventional PGM catalysts with Ce-based OSM. ZPGM-ZRE metals OSM includes a formulation of Cu—Mn stoichiometric spinel structure deposited on Nb—Zr oxide support and may be converted into powder to be used as OSM application or coated onto catalyst substrate. ZPGM-ZRE metals OSM, after aging condition, presents enhanced level of thermal stability and OSC property which shows improved catalytic activity than conventional PGM catalysts including Ce-based OSM. ZPGM-ZRE metals OSM may be suitable for a vast number of applications, and more particularly in underfloor catalyst systems.
Abstract:
A diesel oxidation catalyst (DOC) system for the treatment of exhaust gas emissions, including oxidation of nitrogen oxides (NO), unburned hydrocarbons (HC), and carbon monoxide (CO) is disclosed. Fresh and hydrothermally aged Zero-PGM (ZPGM) DOC samples are prepared and configured with an alumina-based washcoat on ceramic substrate, overcoat including doped Zirconia support oxide, and impregnation layer of Cu—Mn spinel of selected base metal loadings. Testing of fresh and hydrothermally aged ZPGM DOC system samples including Cu—Mn spinel is developed to evaluate the performance of Cu—Mn spinel active phase in oxidation CO, HC, and NO, as well as production of NO2. Key to improvement in light-off performance and NO oxidation is to have a diesel oxidation catalyst that is substantially PGM-free and available for a plurality of applications in lean burn engine operations.
Abstract:
Synergized Platinum Group Metals (SPGM) catalyst system for TWC application is disclosed. Disclosed SPGM catalyst system may include a washcoat with a Cu—Mn spinel structure and an overcoat that includes PGM supported on carrier material oxides, such as alumina. SPGM catalyst system shows significant improvement in nitrogen oxide reduction performance under stoichiometric operating conditions and especially under lean operating conditions, which allows a reduced consumption of fuel. Additionally, disclosed SPGM catalyst system also enhances the reduction of carbon monoxide and hydrocarbon within catalytic converters. Furthermore, disclosed SPGM catalyst systems are found to have enhanced catalyst activity compared to commercial PGM catalyst system, showing that there is a synergistic effect among PGM catalyst and Cu—Mn spinel within the disclosed SPGM catalyst system.