Abstract:
A display substrate and a display device are provided. The display substrate includes a display region and a non-display region located at a periphery of the display region. The non-display region includes a plurality of conductive poles arranged on a base substrate, and the plurality of conductive poles is grounded and is distributed at the periphery of the display region to transfer static electricity out.
Abstract:
There are provided an OLED pixel defining structure, a manufacturing method thereof and an array substrate. The OLED pixel defining structure includes a pixel defining layer, with a plurality of openings corresponding to sub-pixels of different colors being included in the pixel defining layer, each of the openings forming a sub-pixel defining zone of a corresponding color, wherein at least two sub-pixel defining zones of the same color are intercommunicated.
Abstract:
The present disclosure provides an OLED pixel unit, a method for producing the same, a display panel and a display apparatus. The OLED pixel unit includes an organic light emitting diode configured to emit a light within a wavelength range; and a photonic crystal array located at a light exit side of the organic light emitting diode, structural parameters of the photonic crystal array depending on a preset color of the OLED pixel unit. The light emitted from the OLED has a wavelength which is selected by the photonic crystal array such that the preset color is presented at the light exit side of the OLED. It can achieve high resolution over the conventional means due to the photonic crystal array having a machining size in nanometers. Thus, the resolution of the OLED pixel unit using the photonic crystal array can be improved significantly.
Abstract:
The present invention relates to an organic light-emitting diode, an array substrate and a preparation method thereof, and a display device. The organic light-emitting diode comprises an anode, a cathode, a light-emitting layer disposed between the anode and the cathode, and a hole injection layer disposed between the anode and the light-emitting layer, wherein the hole injection layer is provided therein with metal nanoparticles, and the frequency of a localized surface plasmon resonance of the metal nanoparticles is matched with the emission wavelength of the light-emitting layer. As the organic light-emitting diode is doped with metal nanoparticles in the hole injection layer and the resonance frequency of the localized surface plasmon of the metal nanoparticles is matched with the emission wavelength of the light-emitting layer, the metal nanoparticles are allowed to generate localized plasma resonance with photons, so that the light extraction efficiency of the organic light-emitting diode is enhanced.
Abstract:
Embodiments of the present invention disclose a color filter substrate including: a base plate, and a black matrix layer and a barrier pad layer disposed stackedly in sequence on the base plate, the barrier pad layer including a plurality of barrier pads disposed on the same layer; wherein, an orthographic projection of a pattern of each barrier pad onto the base plate is located within a region where a pattern of the black matrix layer is located; and, a surface of each barrier pad is provided with an auxiliary functional layer for absorption or reflection of a light irradiated on the surface of each barrier pad. Correspondingly, embodiments of the present invention disclose a method for manufacturing a color filter substrate, an OLED display panel and a display apparatus.
Abstract:
An organic thin film transistor, a manufacturing method thereof and an array substrate are provided. The manufacturing method of an organic thin film transistor includes: forming an organic semiconductor layer; partially sheltering the organic semiconductor layer, so that a sheltered region and an unsheltered region are formed on the organic semiconductor layer, the sheltered region corresponding to a region where an active layer of the organic thin film transistor needs to be formed; and doping the organic semiconductor layer, so that the organic semiconductor layer in correspondence with the sheltered region is not doped, and the organic semiconductor layer in correspondence with the unsheltered region is doped.
Abstract:
An array substrate includes a substrate (100) having a plurality of sub-pixel regions. Each sub-pixel region includes: a switching element (1) disposed on the substrate, a conductive planar layer (113) disposed on the switching element (1), and a pixel electrode (111) disposed on the conductive planar layer (113), the pixel electrode (111) being electrically connected to the output electrode (105) of the switching element (1). Such array substrate improves the instability of the device caused by stress between materials, enhances the long-term stability of the device, and simplifies the manufacturing process.
Abstract:
The present invention relates to a Cu2Zn0.14Sn0.25Te2.34 nanocrystalline solution, its preparation method, a photosensitive resin solution, a method for forming black matrixes (BMs), and a color filter (CF) substrate. As the particle size of nanocrystallines in the nanocrystalline solution is small and light within the ultraviolet-visible light range can be absorbed, the BMs formed by utilization of the nanocrystalline solution can obtain good light shielding performance while having a small thickness. In the nanocrystalline solution, the particle size of the nanocrystallines dispersed in the nanocrystalline solution is 5 to 20 nm; the band gap of the nanocrystallines is 0.8 to 1.5 ev, and the grain surface of the nanocrystallines has organic functional groups.
Abstract:
Embodiments of the present invention disclose a color filter substrate including: a base plate, and a black matrix layer and a barrier pad layer disposed stackedly in sequence on the base plate, the barrier pad layer including a plurality of barrier pads disposed on the same layer; wherein, an orthographic projection of a pattern of each barrier pad onto the base plate is located within a region where a pattern of the black matrix layer is located; and, a surface of each barrier pad is provided with an auxiliary functional layer for absorption or reflection of a light irradiated on the surface of each barrier pad. Correspondingly, embodiments of the present invention disclose a method for manufacturing a color filter substrate, an OLED display panel and a display apparatus.
Abstract:
An organic light-emitting diode (OLED) substrate, which includes a plurality of light-emitting sub-pixels and a pixel partition wall, wherein at least one layer among hole injection layers (HIL), hole transport layers (HTL) and organic light-emitting layers of at least two light-emitting sub-pixels has a different thickness; and upper surfaces of the HIL, the HTL and the organic light-emitting layer of any light-emitting sub-pixel are each parallel and level to an upper surface of one respective lyophilic film layer of the pixel partition wall. The OLED substrate can be used for improving the surface smoothness of each organic layer of the light-emitting sub-pixel. The embodiment of the present invention further provides a display device.