Abstract:
The present disclosure is related to a method of manufacturing a display substrate. The method may include forming a pattern layer (100, 200) on a base substrate (300) and forming a first planarization layer (500). The pattern layer (100, 200) may include at least one recess (105). Forming the first planarization layer (500) may include forming a pre-polymerized solution (501) at least in the recess (105) and polymerizing the pre-polymerized solution (501) in the recess (105) to form the first planarization layer (500).
Abstract:
The present disclosure discloses a pixel defining layer, a display substrate, and manufacturing methods thereof, and relates to the field of display technology. The pixel defining layer includes: a defining layer body, and a temperature-sensitive polymer layer located on an inner side surface of the defining layer body. The temperature-sensitive polymer layer has a solution temperature threshold, and the hydrophilicity and hydrophobicity of the temperature-sensitive polymer layer are different under temperatures of the temperature-sensitive polymer layer higher and lower than the solution temperature threshold. By changing the temperature of the temperature-sensitive polymer layer to be higher or lower than the solution temperature threshold thereof, the temperature-sensitive polymer layer is converted from hydrophilic to hydrophobic. Thus, the pinning effect of the raw material solution on the inner side surface of the defining layer body is reduced and the thickness uniformity of the pixel layer is improved.
Abstract:
Embodiments of the present disclosure provide an array substrate, a manufacturing method, and a display device. The array substrate comprises: a pixel define layer located on a base substrate, the pixel define layer having a hollow for defining a sub-pixel light emitting area, and a light emitting functional layer located in the hollow, wherein, the pixel define layer has protrusion structures on one or more sides facing the hollow.
Abstract:
The present disclosure provides a pixel defining layer, a display substrate and manufacturing methods thereof, and relates to the field of display technology. The pixel defining layer is located on a base substrate, and configured to define a plurality of pixel regions. The pixel defining layer includes: a defining layer body, and a heat generating substance located in the defining layer body. The heat generating substance is configured to cause a temperature on a side of the defining layer body proximal to the base substrate to be lower than a temperature on a side of the defining layer body distal from the base substrate.
Abstract:
There are provided an OLED device, an OLED display apparatus and a preparation method for an OLED device. The OLED device includes a pixel defining layer on a base substrate and an organic light-emitting functional layer in opening regions of the pixel defining layer, and further includes a first auxiliary electrode layer and a second auxiliary electrode layer which are arranged on the same layer The first auxiliary electrode layer and the second auxiliary electrode layer are arranged between the pixel defining layer and the base substrate, and an electric field can be formed between the first auxiliary electrode layer and the second auxiliary electrode layer. Organic light-emitting molecules in the organic light-emitting material are arranged directionally under the action of the electric field.
Abstract:
The present invention relates to an organic light-emitting diode, an array substrate and a preparation method thereof, and a display device. The organic light-emitting diode comprises an anode, a cathode, a light-emitting layer disposed between the anode and the cathode, and a hole injection layer disposed between the anode and the light-emitting layer, wherein the hole injection layer is provided therein with metal nanoparticles, and the frequency of a localized surface plasmon resonance of the metal nanoparticles is matched with the emission wavelength of the light-emitting layer. As the organic light-emitting diode is doped with metal nanoparticles in the hole injection layer and the resonance frequency of the localized surface plasmon of the metal nanoparticles is matched with the emission wavelength of the light-emitting layer, the metal nanoparticles are allowed to generate localized plasma resonance with photons, so that the light extraction efficiency of the organic light-emitting diode is enhanced.
Abstract:
An apparatus and method for coating an organic film are disclosed. The apparatus comprises an evaporation device, an electron emission device and a spray device; wherein the evaporation device comprises an evaporation container, the evaporation container is a linear evaporation container, in which a uniform organic gas is generated; the electron emission device is horizontally arranged over the evaporation container such that the organic gas evaporated in the evaporation container is uniformly charged and becomes charged organic gas; the spray device is provided with an electric field, under which the charged organic gas is moved toward a substrate so as to deposit the organic film on the substrate.
Abstract:
An apparatus and method for coating an organic film are disclosed. The apparatus comprises an evaporation device, an electron emission device and a spray device; wherein the evaporation device comprises an evaporation container, the evaporation container is a linear evaporation container, in which a uniform organic gas is generated; the electron emission device is horizontally arranged over the evaporation container such that the organic gas evaporated in the evaporation container is uniformly charged and becomes charged organic gas; the spray device is provided with an electric field, under which the charged organic gas is moved toward a substrate so as to deposit the organic film on the substrate.
Abstract:
An organic light-emitting diode (OLED) substrate, which includes a plurality of light-emitting sub-pixels and a pixel partition wall, wherein at least one layer among hole injection layers (HIL), hole transport layers (HTL) and organic light-emitting layers of at least two light-emitting sub-pixels has a different thickness; and upper surfaces of the HIL, the HTL and the organic light-emitting layer of any light-emitting sub-pixel are each parallel and level to an upper surface of one respective lyophilic film layer of the pixel partition wall. The OLED substrate can be used for improving the surface smoothness of each organic layer of the light-emitting sub-pixel. The embodiment of the present invention further provides a display device.