Abstract:
The present disclosure provides a shift register unit and a shift register, a gate driver circuit and a display apparatus where the shift register unit can be applied. A signal amplification module including two transistors each having a small channel width is added at an output node of the shift register unit. In this way, the output capability can be improved significantly with the same design parameters in case of a high load.
Abstract:
An AMOLED comprises a plurality of pixel structures arranged in a matrix and one layer of power supply signal electrode configured to provide a power supply voltage signal for the pixel structures, and the power supply signal electrode has a planar structure. The planar power supply signal electrode can greatly reduce its resistance and hence can reduce the IR drop of power supply voltage signals that are transmitted over the power supply signal electrode, effectively reduce the impact of the IR drop on the display effect, and remarkably reduce the power consumption of a panel.
Abstract:
The present disclosure provides a frame scanning pixel display driving unit and a driving method thereof, and a display apparatus. The frame scanning pixel display driving unit includes: a driving control module for receiving a first frame data signal, and controlling the driving transistor to drive the pixel to display based on the first frame data signal; a data writing module for receiving and latch the second frame data signal when the driving transistor drives the pixel to display based on the first frame data signal, and transmitting the second frame data signal to the driving control module after the displaying of the first frame data signal is completed. The present disclosure enables a frame scanning display mode, and can reduce the power consumption during the signal writing phase and effectively reduce the power consumption of the panel display.
Abstract:
The present disclosure provides a shift register for delaying and outputting a received startup voltage and meanwhile outputting a voltage inverse to the delayed startup voltage. The shift register including: a voltage shifting module (21) for outputting from the second output terminal a voltage non-inverted to the startup voltage under the control of a second startup voltage signal; a voltage inverting module (22) for outputting from the first output terminal a voltage inverse to the startup voltage under the control of the voltage outputted from the voltage shifting module, and outputting from the first output terminal the voltage non-inverted to the startup voltage under the control of the first startup voltage signal or a third startup voltage signal; a voltage complementing module (23) for outputting from the second output terminal the voltage inverse to the startup voltage under the control of the voltage outputted from the voltage inverting module; and a voltage shifting control module (24) for controlling to turn off the voltage shifting module under the control of the third startup voltage signal. The present disclosure further provides a display apparatus adopting the above shift register and a corresponding method.
Abstract:
A pixel readout circuit including a reset circuit configured to reset a first node to a first power supply voltage in response to a signal on a first scan line being active; a photodetector configured to generate, responsive to incident light, a charge signal and integrate the charge signal, the integrated charge signal causing a change in a voltage level at the first node; a photosensitive circuit configured to generate a pixel current in response to the change in the voltage level at the first node; and a switch circuit configured to transfer the pixel current to a signal readout line for readout in response to a signal on a second scan line being active.
Abstract:
There provide a pixel driving circuit and driving method thereof, an array substrate and display apparatus, wherein the pixel driving circuit comprises: a data line; a gate line; a first power supply line; a second power supply line; a light emitting device connected to the second power supply line; a driving transistor connected to the first power supply line; a storage capacitor having a first terminal connected to a gate of the driving transistor and configured to transfer information including the data voltage to the gate of the driving transistor; a resetting unit configured to reset a voltage across the storage capacitor as a predetermined signal voltage; a data writing unit configured to write information including the data voltage into the second terminal of the storage capacitor; a compensating unit configured to write information including a threshold voltage of the driving transistor and information of the first power supply voltage into the first terminal of the storage capacitor; and a light emitting control unit connected to the storage capacitor, the driving transistor and the light emitting device, and configured to control the driving transistor to drive the light emitting device to emit light.
Abstract:
Embodiments of the disclosure provide a display substrate and a driving method thereof, as well as a display device. The display substrate comprises a plurality of select switch arrays and a plurality of selecting control circuits formed on the base substrate. Each select switch array comprises a plurality of select switches, a first terminal of each select switch being connected to a corresponding data line, a second end of each select switch being connected to a same data voltage input terminal, a control terminal of each select switch being connected to a same selecting control circuit. Each data line is connected with two columns of pixels, and the gate lines connected with the two columns of pixels are different. Each selecting control circuit is connected to a plurality of selecting control signal input terminals and a corresponding select switch array.
Abstract:
A shift register unit is disclosed, including a first input module transmitting a first level voltage signal to a first node under control of a voltage signal of a second node; a reset module transmitting a second level voltage signal to the first node under control of an output signal of the present stage of shift register unit; a first output module outputting the second level voltage signal to the output terminal of the shift register unit under control of a voltage signal of the first node; a second input module receiving an input signal and transmitting the input signal to the second node under control of a clock signal; a storage capacitor maintaining the voltage of the second node while the second input module is turned off; and a second output module outputting the first level voltage signal to the output terminal.
Abstract:
The present invention provides a pixel circuit, a driving method thereof and a display device which are related to the field of display technology. The pixel circuit comprises a reset module, a compensation module, an energy storage module, a drive module, a drive control module, a power supply module and a light emitting module, the input voltage of the third power supply signal terminal is larger than the difference between the input voltage of the data signal terminal and the threshold voltage of the drive module, and is less than the input voltage of the second power supply signal terminal. The present invention is capable of discharging the driving transistor to a potential Vth within a short period, ensuring the driving transistor to be discharged completely in a short time.
Abstract:
Disclosed are a shift register unit and a driving method thereof, a shift register and a display device. The shift register unit comprises: an input module (P1), which connected to a first clock signal end (Clk1), a second clock signal end (Clk2) and a data carry signal end (STV) and is used for providing a selection signal according to signals input via the first clock signal end (Clk1), the second clock signal end (Clk2) and the data carry signal end (STV); and an output module (P2), which is connected to a high level end (VGH), a low level end (VGL), and an output end (Output) of the shift register unit and is used for selectively outputting a high level or a low level at the output end (Output) according to the selection signal provided by the input module (P1). The shift register comprises a plurality of stages of shift register units, and the display device comprises a shift register. The normal operation of a shift register unit can be ensured by utilizing only one stage of circuit, so that a circuit structure of the shift register unit is simplified.