Abstract:
A substrate and a method of manufacturing the same, a display panel, and a display device are provided, the substrate includes: a base substrate; a defining layer on the base substrate, the defining layer enclosing at least one printing region, the defining layer including: a first sub-defining layer on the base substrate; and a second sub-defining layer on a side of the first sub-defining layer away from the base substrate; and at least one pillar on the side of the first sub-defining layer away from the base substrate and in the at least one printing region, the at least one pillar is configured to break surface tension of ink formed in the at least one printing region.
Abstract:
The present disclosure relates to the field of display technologies, and especially discloses a backlight device and a method for manufacturing the same. The backlight device includes a backlight source, a light guide plate, a reflective layer, an optical adhesive layer and an outcoupling structure. Specifically, in the backlight device, the reflective layer and the light guide plate are located on opposite sides of the backlight source respectively.
Abstract:
An inkjet amount measuring system, an inkjet amount measuring method and an inkjet amount controlling method. The inkjet amount measuring system includes: an inkjet printing spray head; and electricity applying device configured to apply electric charges to ink droplets passing through a nozzle of the inkjet printing spray head; a magnetic field generating device configured to generate a magnetic field to deflect the charged ink droplets; a test board having a surface for carrying ink droplets; and a processor configured to calculate an amount of ink droplets according to positions of falling points of the ink droplets on the surface of the test board, an electric charge amount of the ink droplets, and a magnetic field intensity.
Abstract:
Embodiments of the present disclosure provide a printhead, a printing equipment and a printing method. The printhead includes: a primary liquid discharging assembly, including a plurality of primary liquid discharging nozzles for forming primary droplets; and a plurality of flow branching components below the primary liquid discharging assembly, and the plurality of flow branching components being in one-to-one correspondence with the plurality of primary liquid discharging nozzles, wherein each of the plurality of flow branching component is configured to be in contact with the primary droplet formed by the corresponding primary liquid discharging nozzle of the plurality of primary liquid discharging nozzles, and split each of the primary droplets into at least two branched droplets.
Abstract:
An evaporation source includes a heat source structure and an evaporation container for accommodating a to-be-evaporated material. The heat source structure includes a heat source and a thermal conductor. The thermal conductor is in contact with the evaporation container, and the heat source is at the thermal conductor and around the evaporation container.
Abstract:
Embodiments of the present invention disclose a bended liquid crystal display and a manufacturing method and apparatus therefore. The method comprises: preparing an array substrate and a color filter substrate with flat glass sheets having different thermal expansion coefficients; applying adhesive sealant at edges of surfaces of the array substrate and/or the color filter substrate; heating the array substrate and the color filter substrate, and binding the expanded array substrate and color filter substrate together, to form an assembled substrate; and cooling the assembled substrate and forming a bended assembled substrate having a degree of curvature. The bended liquid crystal display has a better stability, and has no variation in its degree of curvature over service time.
Abstract:
A light-emitting device includes: a light-emitting element; a light conversion layer disposed on a light exit side of the light-emitting element and including a first portion and a second portion located on a side of the first portion in a first direction; a first material layer disposed between the light-emitting element and the light conversion layer and configured such that light emitted by the light-emitting element is incident into the light conversion layer; and a second material layer on a side of the first material layer in the first direction, a third material layer on a side face of the light conversion layer, and a fourth material layer on a side of the light conversion layer away from the light-emitting element, which are configured such that light unconverted by the light conversion layer is reflected on surfaces of a structure formed by the second, third and fourth material layers.
Abstract:
A display substrate, including: a base substrate; a pixel defining layer including: a plurality of first blocking portions spaced in a second direction, a plurality of second blocking portions spaced in a first direction and a plurality of barriers spaced in the first direction, each first blocking portion is parallel to the first direction, each second blocking portion is parallel to the second direction, the plurality of first blocking portions and second blocking portions surround to form a plurality of pixel light-emitting regions, and at least one barrier is disposed between adjacent second blocking portions in the second direction; a plurality of accommodating regions, at least one thereof is located between adjacent first blocking portions in the second direction and between adjacent second blocking portion and barrier in the first direction; and a first diversion structure disposed on a side of the second blocking portion away from the base substrate.
Abstract:
A display panel includes a first base substrate, a plurality of light sources on the first base substrate, a second base substrate opposite to the first base substrate, a light conversion structure on the second base substrate, a plurality of extinction structures on a side of the light conversion structure facing the first base substrate, a first channel formed between any two adjacent extinction structures, a plurality of first optical structures on a side of the light conversion structure facing the first base substrate, wherein the plurality of first optical structures are respectively located in the first channels each between any two adjacent extinction structures, and a filler portion between the plurality of light sources and the plurality of first optical structures. The filler portion contains a material with a refractive index greater than that of a material of the first optical structure, and the extinction structure contains light-absorbing material.
Abstract:
A display panel includes a first base substrate, a plurality of light sources on the first base substrate, a second base substrate opposite to the first base substrate, a light conversion structure on the second base substrate, a plurality of extinction structures on a side of the light conversion structure facing the first base substrate, a first channel formed between any two adjacent extinction structures, a plurality of first optical structures on a side of the light conversion structure facing the first base substrate, wherein the plurality of first optical structures are respectively located in the first channels each between any two adjacent extinction structures, and a filler portion between the plurality of light sources and the plurality of first optical structures. The filler portion contains a material with a refractive index greater than that of a material of the first optical structure, and the extinction structure contains light-absorbing material.