Abstract:
An electronic device with a display and a touch-sensitive surface displays, on the display, a first visual indicator that corresponds to a virtual touch. The device receives a first input from an adaptive input device. In response to receiving the first input from the adaptive input device, the device displays a first menu on the display. The first menu includes a virtual touches selection icon. In response to detecting selection of the virtual touches selection icon, a menu of virtual multitouch contacts is displayed.
Abstract:
An electronic device includes a display, a rotatable input mechanism, one or more processors, and memory. The electronic device displays content on the display and detects a first user input. In response to detecting the first user input, the electronic displays an enlarged view of the content that includes displaying an enlarged first portion of the content without displaying a second portion of the content. While displaying the enlarged view of the enlarged first portion of the content, in response to detecting a rotation of the rotatable input mechanism, the electronic device performs different tasks based on the operational state of the electronic device.
Abstract:
An electronic device with a display and a touch-sensitive surface displays, on the display, a first visual indicator. The electronic device receives a first single touch input on the touch-sensitive surface at a location that corresponds to the first visual indicator; and, in response to detecting the first single touch input on the touch-sensitive surface at a location that corresponds to the first visual indicator, replaces display of the first visual indicator with display of a first menu. The first menu includes a virtual touches selection icon. In response to detecting selection of the virtual touches selection icon, the electronic device displays a menu of virtual multitouch contacts.
Abstract:
Disclosed herein are systems and methods that enable low-vision users to interact with touch-sensitive secondary displays. An example method includes, while operating a touch-sensitive secondary display in an accessibility mode: displaying, on the primary display, a first user interface for an application, and displaying, on the touch-sensitive secondary display, a second user interface that includes: (i) application-specific affordances, and (ii) a system-level affordance, where each application-specific affordance and the system-level affordance are displayed with a first display size. The method includes detecting an input at the application-specific affordance. In response to detecting the input, and while the input remains in contact: continuing to display the first user interface for the application; and displaying, on the primary display, a zoomed-in representation of the at least one application-specific affordance, where the zoomed-in representation of the application-specific affordance is displayed with a second display size that is larger than the first display size.
Abstract:
Systems and processes for scanning a user interface are disclosed. One process can include scanning multiple elements within a user interface by highlighting the elements. The process can further include receiving a selection while one of the elements is highlighted and performing an action on the element that was highlighted when the selection was received. The action can include scanning the contents of the selected element or performing an action associated with the selected element. The process can be used to navigate an array of application icons, a menu of options, a standard desktop or laptop operating system interface, or the like. The process can also be used to perform gestures on a touch-sensitive device or mouse and track pad gestures (e.g., flick, tap, or freehand gestures).
Abstract:
While an electronic device with a display and a touch-sensitive surface is in a screen reader accessibility mode, the device displays a character input area and a keyboard, the keyboard including a plurality of key icons. The device detects a sequence of one or more gestures on the touch-sensitive surface that correspond to one or more characters. A respective gesture of the one or more gestures that corresponds to a respective character is a single finger gesture that moves across the touch-sensitive surface along a respective path that corresponds to the respective character. The respective path traverses one or more locations on the touch-sensitive surface that correspond to one or more key icons of the plurality of key icons without activating the one or more key icons. In response to detecting the respective gesture, the device enters the corresponding respective character in the character input area of the display.
Abstract:
Systems and processes for scanning a user interface are disclosed. One process can include scanning multiple elements within a user interface by highlighting the elements. The process can further include receiving a selection while one of the elements is highlighted and performing an action on the element that was highlighted when the selection was received. The action can include scanning the contents of the selected element or performing an action associated with the selected element. The process can be used to navigate an array of application icons, a menu of options, a standard desktop or laptop operating system interface, or the like. The process can also be used to perform gestures on a touch-sensitive device or mouse and track pad gestures (e.g., flick, tap, or freehand gestures).
Abstract:
While an electronic device with a display and a touch-sensitive surface is in a screen reader accessibility mode, the device displays an application launcher screen including a plurality of application icons. A respective application icon corresponds to a respective application stored in the device. The device detects a sequence of one or more gestures on the touch-sensitive surface that correspond to one or more characters. A respective gesture that corresponds to a respective character is a single finger gesture that moves across the touch-sensitive surface along a respective path that corresponds to the respective character. The device determines whether the detected sequence of one or more gestures corresponds to a respective application icon of the plurality of application icons, and, in response to determining that the detected sequence of one or more gestures corresponds to the respective application icon, performs a predefined operation associated with the respective application icon.
Abstract:
A method for controlling a peripheral from a group of computing devices is provided. The method sets up a group of computing devices for providing media content and control settings to a peripheral device such as a hearing aid. The computing devices in the group are interconnected by a network and exchange data with each other regarding the peripheral. A master device in the group is directly paired with the peripheral device and can use the pairing connection to provide media content or to apply the control settings to the peripheral device. The peripheral device is paired with only the master devices of the group. A slave device can request to directly pair with the peripheral device and become the master device in order to provide media content to the peripheral.
Abstract:
An electronic device, while in a restricted interaction mode in an application other than a call application, displays a first user interface that includes a plurality of user interface objects, and receives an incoming call. The electronic device determines whether the incoming phone call satisfies predefined signaling criteria. In accordance with a determination that the incoming call satisfies the predefined signaling criteria, the electronic device outputs a signal that indicates the incoming call. In accordance with a determination that the incoming phone call does not satisfy the predefined criteria, the electronic device foregoes outputting the signal indicating the incoming call.