Abstract:
Efficient and highly-scalable network solutions are provided that each utilize deployment units based on Clos networks, but in an environment such as a data center of Internet Protocol-based network. Each of the deployment units can include multiple stages of devices, where connections between devices are only made between stages and the deployment units are highly connected. In some embodiments, the level of connectivity between two stages can be reduced, providing available connections to add edge switches and additional host connections while keeping the same number of between-tier connections. In some embodiments, where deployment units (or other network groups) can be used at different levels to connect other deployment units, the edges of the deployment units can be fused to reduce the number of devices per host connection.
Abstract:
Customers in a multi-tenant environment can obtain energy consumption information for a set of resources or other computing components used by those customers, including time-accurate accounting for various components of those resources utilized on behalf of the customer. A customer can also have the ability to specify how the resources are to be operated when used for the customer, in order to manage the amount of energy consumption. The accounting can be performed even when the resources are shared among multiple users or entities. Various hardware components or agents can be used to provide detailed energy consumption information for those components that is associated with a particular customer. The information can be used not only for accounting and monitoring purposes, but also to make dynamic adjustments based on various changes in usage, energy consumption, or other such factors.
Abstract:
Host machines and other devices performing synchronized operations can be dispersed across multiple racks in a data center to provide additional buffer capacity and to reduce the likelihood of congestion. The level of dispersion can depend on factors such as the level of oversubscription, as it can be undesirable in a highly connected network to push excessive host traffic into the aggregation fabric. As oversubscription levels increase, the amount of dispersion can be reduced and two or more host machines can be clustered on a given rack, or otherwise connected through the same edge switch. By clustering a portion of the machines, some of the host traffic can be redirected by the respective edge switch without entering the aggregation fabric. When provisioning hosts for a customer, application, or synchronized operation, for example, the levels of clustering and dispersion can be balanced to minimize the likelihood for congestion throughout the network.
Abstract:
Efficient and highly-scalable network solutions are provided that each utilize deployment units based on Clos networks, but in an environment such as a data center of Internet Protocol-based network. Each of the deployment units can include multiple stages of devices, where connections between devices are only made between stages and the deployment units are highly connected. In some embodiments, the level of connectivity between two stages can be reduced, providing available connections to add edge switches and additional host connections while keeping the same number of between-tier connections. In some embodiments, where deployment units (or other network groups) can be used at different levels to connect other deployment units, the edges of the deployment units can be fused to reduce the number of devices per host connection.
Abstract:
Approaches are described for updating code and/or instructions in one or more computing devices. In particular, various embodiments provide approaches for updating the microcode of one or more processors of a computing device without requiring a restart of the computing device and without disrupting the various components (e.g., applications, virtual machines, etc.) executing on the computing device. The microcode updates can be performed on host computing devices deployed in a resource center of a service provider (e.g., cloud computing service provider), where each host computing device may be executing a hypervisor hosting multiple guest virtual machines (or other guest applications) for the customers of the service provider.
Abstract:
Systems and methods are described for managing computing resources. In one embodiment, mappings between a plurality of parameters of an abstracted firmware framework to corresponding firmware settings of computing components are maintained. The mappings are determined based on predetermined associations between vendor-specific firmware settings and abstracted firmware settings that implement a standardized interface that is independent of the vendor-specific firmware settings. In response to receiving one of the plurality of parameters, the received parameter is translated to corresponding vendor-specific firmware settings based on the mappings.
Abstract:
The transmission of data on computer networks according to one or more policies is disclosed. A policy may specify, among other things, various parameters which are to be followed when transmitting initiating network traffic. Multiple network interfaces may be installed on a server to enable transmission of data from the single server according a number of discrete configuration settings implicated by the various policies. The multiple network interfaces may correspond to separate physical components, with each component configured independently to implement a feature of a policy. The multiple network interfaces may also correspond to a single physical component that exposes multiple network interfaces, both to the network and to the server on which it is installed.
Abstract:
Attempts to update confirmation information or firmware for a hardware device can be monitored using a secure counter that is configured to monotonically adjust a current value of the secure counter for each update or update attempt. The value of the counter can be determined every time the validity of the firmware is confirmed, and this value can be stored to a secure location. At subsequent times, such as during a boot process, the actual value of the counter can be determined and compared with the expected value. If the values do not match, such that the firmware may be in an unexpected state, an action can be taken, such as to prevent access to, or isolate, the hardware until such time as the firmware can be validated or updated to an expected state.
Abstract:
A system and method for preventing dependency problems, such as deadlocks, within startup of computing service workflows, such as workflows that occur within computing assets that provide network-based computing services. The system and method creates a remedial workflow or action for the computing services to address deadlocks or other blocking conditions within the services which may occur should the underlying computing assets need to be restarted, rebooted or sequentially execute and reach a problematic operational state. The system and method will determine the reliance of each computing service upon the functionality of one or more other network-based computing services and structure the remedial workflow accordingly. Other aspects of the disclosure are described in the detailed description, figures, and claims.
Abstract:
Techniques for using hardware-based mechanisms for updating computing resources are described herein. At a time after receiving a code update request, one or more hardware-supported system management capabilities of processors within a computing system are invoked at least to interrupt execution of currently running instructions. While the system management capabilities are active and instruction execution is suspended, programmatic routines are updated. After the updates are complete, instruction execution is resumed.