Abstract:
A content delivery system includes a cache server, a domain name server, and a redirector. The domain name server is configured to receive a request for a cache server address, and provide an IPv6 anycast address. The redirector is configured to receive a content request addressed to the IPv6 anycast address from a client system, receive load information from the cache server, and determine if the cache server is available. The redirector is further configured to forward the content request to the cache server when the cache server is available. The cache server is configured to receive the content request forwarded from the redirectors, send a response to the content request to a client system, the response including an IPv6 unicast address of the cache server as a source address, an IPv6 unicast address of the client system as a destination address, and the IPv6 anycast address as a home address, and provide the content to the requestor.
Abstract:
A method includes forecasting demand for media content items of a media distribution system based on historical demand information to generate forecasted demand. The method includes generating a mixed integer program model based on storage constraints of a plurality of distribution nodes of the media distribution system, bandwidth constraints of the media distribution system, and the forecasted demand. The method includes performing a Lagrangian relaxation operation using the mixed integer program model. The method includes determining values of a cost function based on a result of the Lagrangian relaxation operation. The method includes assigning each of the media content items to a corresponding distribution node of the plurality of distribution nodes based on the cost function and the forecasted demand.
Abstract:
Methods and apparatus to migrate a mobile device from a first virtual private mobile network to a second virtual private mobile network are disclosed. An example apparatus includes a processor and a memory including instructions that cause the processor to perform operations including determining, based on a set of latency routing rules, that a communication transmitted via the first virtual private mobile network is a latency sensitive communication. In response to determining the communication is a latency sensitive communication, the mobile device that originated the latency sensitive communication is identified. The mobile device is communicating via the first virtual private mobile network. Example operations also include migrating the mobile device from the first virtual private mobile network to the second virtual private mobile network wherein the second virtual private mobile network is configured to reduce the latency of the latency sensitive communication.
Abstract:
Mobile device data transfer via a wireless network is disclosed. A data manager component (DMC) on a carrier-side of an air interface can receive a request for data from a device located on a client-side of the air interface. The DMC can collect data related to the data request. Data can be collected by the DMC from remotely located servers. The collected data can be parsed to facilitate determining additional data that can be collected based on the request for data. The collected data and additional data can be bundled and returned via the air interface to the device on the client-side. Bundling the collected data and additional data can be in accord with an IND scheme, an ONLD scheme, a PARCEL(X) scheme, etc. This can improve load times associate with the requested data and can also reduce power consumption associated with the data transfer over the air interface.
Abstract:
A content delivery system includes a cache server, a domain name server, and a redirector. The domain name server is configured to receive a request for a cache server address, and provide an IPv6 anycast address. The redirector is configured to receive a content request addressed to the IPv6 anycast address from a client system, receive load information from the cache server, and determine if the cache server is available. The redirector is further configured to forward the content request to the cache server when the cache server is available. The cache server is configured to receive the content request forwarded from the redirectors, send a response to the content request to a client system, the response including an IPv6 unicast address of the cache server as a source address, an IPv6 unicast address of the client system as a destination address, and the IPv6 anycast address as a home address, and provide the content to the requestor.
Abstract:
A method includes determining, at a network routing device, an average packet drop rate for a plurality of aggregations of packet flows. The method also determines a threshold packet drop rate based on the average packet drop rate, a current packet drop rate for a select aggregation of the plurality of aggregations, and whether at least one packet flow of the select aggregation is potentially subject to a denial-of-service attack based on a comparison of the current packet drop rate to the threshold packet drop rate.