Abstract:
The wireless earphone (1) comprises a housing (2) having a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet (5) at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver (6) is inside the bud portion. Electronic circuitry (7,24) inside the housing (2) includes a wireless communications interface (4) to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery (3) as a power source for the electronic circuitry is located inside a cavity of the stem portion.
Abstract:
A headphone is disclosed herein. The headphone includes a wireless transceiver, a wired communication module, a power storage device, a speaker, and control circuitry. The wireless transceiver and the wired communication module and the wireless transceiver are connected to the speaker via the control circuitry. The control circuitry is configured to determine whether to control the speaker according to data received via the wired communication module and the wireless transceiver and to seamlessly transition control of the speaker from data received from one of the wired communication module and the wireless transceiver to the other of the wired communication module and the wireless transceiver.
Abstract:
A method performed by an in-ear headphone. Coupled to the in-ear headphone is a first ear tip that is inserted into an ear canal of a user. The method obtains an audio signal from an audio source device paired with the in-ear headphone and uses the signal to drive a speaker of the headphone to output a sound into the ear canal. The method obtains a microphone signal that is responsive to the outputted sound. The method notifies the user to replace the first ear tip with a second ear tip in response to a parameter associated with the microphone signal being less than a threshold.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
A system and method is described for determining whether a loudspeaker device has relocated, tilted, rotated, or changed environment such that one or more parameters for driving the loudspeaker may be modified and/or a complete reconfiguration of the loudspeaker system may be performed. In one embodiment, the system may include a set of sensors. The sensors provide readings that are analyzed to determine 1) whether the loudspeaker has moved since a previous analysis and/or 2) a distance of movement and/or a degree change in orientation of the loudspeaker since the previous analysis. Upon determining the level of movement is below a threshold value, the system adjusts previous parameters used to drive one or more of the loudspeakers. By adjusting previous parameters instead of performing a complete recalibration, the system provides a more efficient technique for ensuring that the loudspeakers continue to produce accurate sound for the listener.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
A system and method is described for determining whether a loudspeaker device has relocated, tilted, rotated, or changed environment such that one or more parameters for driving the loudspeaker may be modified and/or a complete reconfiguration of the loudspeaker system may be performed. In one embodiment, the system may include a set of sensors. The sensors provide readings that are analyzed to determine 1) whether the loudspeaker has moved since a previous analysis and/or 2) a distance of movement and/or a degree change in orientation of the loudspeaker since the previous analysis. Upon determining the level of movement is below a threshold value, the system adjusts previous parameters used to drive one or more of the loudspeakers. By adjusting previous parameters instead of performing a complete recalibration, the system provides a more efficient technique for ensuring that the loudspeakers continue to produce accurate sound for the listener.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
A wireless headset includes first and second wireless earphone devices, each including a microphone. The first earphone device assembles a first group of audio packets, each of which includes a first low-resolution clock value, a first high-resolution clock value, and a sequence of first microphone samples, and transmits the first plurality of audio packets to the second wireless earphone device, as a slave device of a first wireless network. The second earphone device receives the first group of audio packets from the first wireless earphone device, assembles a second group of audio packets, each of which includes a second low-resolution clock value, a second high-resolution clock value, and a sequence of second microphone samples, and transmits the first and second groups of audio packets to an external device. Other aspects are also described and claimed.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.