Abstract:
Some embodiments relate to a cellular network which facilitates transmission of messages, such as SMS or MMS messages, to/from respective user equipment (UE) devices of a user. Each of the UE devices may provide a relative priority value indicating a priority for receipt of messages relative to the other UE devices associated with the user. When a message intended for the user is received at the cellular network, the priority information associated with each of the user's at least two UE devices may be retrieved. The message may then be selectively delivered (by the cellular network) to one of the first UE device or the second UE device based on the relative values of the first priority value and the second priority value. If a delivery attempt fails to the highest priority device, the cellular network may attempt to deliver the message to the second highest priority UE device.
Abstract:
Methods, devices, and servers for as-needed update of a trusted list are provided herein. An electronic subscriber identity module (eSIM) server receives a request for an eSIM of a particular type from a wireless device. The eSIM server evaluates the particular type and requests an eSIM of the particular type from a second eSIM server, which is not initially trusted by a secure element (SE) of the wireless device. The eSIM server sends a policy update to the wireless device. The wireless device passes the policy update to the SE, for example, a universal integrated circuit card (UICC). The UICC updates the trusted list with an identity of the second eSIM server. When the wireless device downloads a bound profile package (BPP) containing an eSIM from the second eSIM server, the UICC validates the BPP based on the updated trusted list. The eSIM is then installed on the UICC.
Abstract:
Methods and apparatus enabling programming of electronic identification information of a wireless apparatus. In one embodiment, a previously purchased or deployed wireless apparatus is activated by a cellular network. The wireless apparatus connects to the cellular network using an access module to download operating system components and/or access control client components. The described methods and apparatus enable updates, additions and replacement of various components including Electronic Subscriber Identity Module (eSIM) data, OS components. One exemplary implementation of the invention utilizes a trusted key exchange between the device and the cellular network to maintain security.
Abstract:
Methods and apparatus for large scale distribution of electronic access control clients. In one aspect, a tiered security software protocol is disclosed. In one exemplary embodiment, a server electronic Universal Integrated Circuit Card (eUICC) and client eUICC software comprise a so-called “stack” of software layers. Each software layer is responsible for a set of hierarchical functions which are negotiated with its corresponding peer software layer. The tiered security software protocol is configured for large scale distribution of electronic Subscriber Identity Modules (eSIMs).
Abstract:
Embodiments are described for identifying and accessing an electronic subscriber identity module (eSIM) and associated content of the eSIM in a multiple eSIM configuration. An embedded Universal Integrated Circuit Card (eUICC) can include multiple eSIMs, where each eSIM can include its own file structures and applications. Some embodiments include a processor of a mobile device transmitting a special command to the eUICC, including an identification that uniquely identifies an eSIM in the eUICC. After selecting the eSIM, the processor can access file structures and applications of the selected eSIM. The processor can then use existing commands to access content in the selected eSIM. The special command can direct the eUICC to activate or deactivate content associated with the selected eSIM. Other embodiments include an eUICC platform operating system interacting with eSIMs associated with logical channels to facilitate identification and access to file structures and applications of the eSIMs.
Abstract:
Some embodiments relate to a cellular network which facilitates transmission of messages, such as SMS or MMS messages, to/from respective user equipment (UE) devices of a user. Each of the UE devices may provide a relative priority value indicating a priority for receipt of messages relative to the other UE devices associated with the user. When a message intended for the user is received at the cellular network, the priority information associated with each of the user's at least two UE devices may be retrieved. The message may then be selectively delivered (by the cellular network) to one of the first UE device or the second UE device based on the relative values of the first priority value and the second priority value. If a delivery attempt fails to the highest priority device, the cellular network may attempt to deliver the message to the second highest priority UE device.
Abstract:
Some embodiments relate to methods for provisioning a secondary wireless device with an eSIM for wireless communication and activating multi-SIM functionality between the secondary wireless device and a primary wireless device having a subscribed SIM. The primary wireless device may act as a proxy in obtaining the eSIM for the secondary wireless device. The primary wireless device may then provide, to the cellular network, identifiers of the SIMs of the primary and secondary wireless devices. The primary wireless device may then request initiation of multi-SIM functionality for the two SIMs, and receive an indication that the multi-SIM functionality has been initiated. As an example, the multi-SIM functionality may be implemented by mapping the SIM of the primary wireless device and the SIM of the secondary wireless device (e.g., the provisioned eSIM) to the same Mobile Directory Number (MDN).
Abstract:
In some implementations, radio access technology (RAT) signals can be monitored and used to synchronize an internal clock of a mobile device to a network system clock without registering the mobile device to the network. In some implementations, a RAT processor can be configured to receive RAT signals and to prevent transmission of RAT signals. In some implementations, the internal clock can be associated with a GNSS processor and can be used to calculate a location of the mobile device. In some implementations, a RAT processor that is configured for a particular radio access technology can be configured to monitor signals associated with another radio access technology when synchronizing the internal clock. In some implementations, the RAT processor can monitor signals in response to a power event. The power event can be associated with powering a display of the mobile device.
Abstract:
Apparatuses, systems, and methods for multi-SIM user equipment (UE) devices to perform data operations with a packet data network of a carrier associated with a first SIM of the UE. An indication of a requested data operation with the packet data network of the carrier associated with the first SIM of the UE may be received. The UE may be operating in a dual SIM mode in which the packet data network of the carrier associated with the first SIM of the UE is unavailable. It may be determined if one or more conditions for performing the requested data operation are present and if a data path to perform the requested data operation is available. The requested data operation may be performed if the one or more conditions for performing the requested data operation are present and if a data path to perform the requested data operation is available.
Abstract:
Configuring a mobile wireless communication device using a carrier service configuration profile selected from a set of stored carrier service configuration profiles. Carrier service configuration profiles are selected based on one or more combinations of identifier values stored in the mobile wireless communication device. Carrier service configuration profiles are priority ranked based on a specificity of the one or more combinations of identifier values.