Abstract:
Some embodiments provide a warning prompt control module which adjustably controls the display of warning prompts for vehicle elements in a vehicle, based on a determined profile with which the occupant is associated. An occupant detected in the vehicle interior can be associated with a profile based on a sensor data representation of the occupant correlating with a sensor data representation included in the profile, accessing a profile from a device supporting the occupant, etc. A profile can include interaction history data which indicate historical interactions with warning prompts for a vehicle element. Displaying a warning prompt for a vehicle element can be adjustably controlled based on the interaction history data, included in a profile, which is associated with the vehicle element.
Abstract:
A system and method that receives and edits image data of an underwater scene in a digital image in order to remove undesirable tints from objects in the scene. In some embodiments, colors near the color of the water itself are protected to leave the water looking blue. Removing undesirable tints without removing the tint of the water itself results in images with more realistic coloring of people and objects in the scene, without eliminating the color cues (e.g., blue water) that indicate that the image is a photograph of an underwater scene.
Abstract:
A method and system for controlling multiple image editing controls using one master control. The system identifies various characteristics of an image being edited. The system generates, for each of multiple image editing controls, a relationship between the master control and the image editing control. The relationship is based on at least one of the identified characteristics of the image being edited. The relationship is different for different images when the different images have different characteristics, such as different average color component values at a particular percentile of pixels in the images.
Abstract:
A system and method that receives and edits image data of an underwater scene in a digital image in order to remove undesirable tints from objects in the scene. In some embodiments, colors near the color of the water itself are protected to leave the water looking blue. Removing undesirable tints without removing the tint of the water itself results in images with more realistic coloring of people and objects in the scene, without eliminating the color cues (e.g., blue water) that indicate that the image is a photograph of an underwater scene.
Abstract:
Some embodiments of the image editing and organizing application described herein provide a multi-stage automatic enhancement process. The process takes an input image and feeds it through multiple different enhancement operations. The multiple enhancement operations of some embodiments are carried out in a particular order. In some embodiments, the particular order starts with exposure adjustment, then a white balance adjustment, then a vibrancy adjustment, then a tonal response curve adjustment, then a shadow lift adjustment.
Abstract:
Some embodiments provide an image editing application with a novel color modification slider tool. In some embodiments, this tool adjusts one or more color attributes (e.g., one or more color channels) of different pixels differently when moved in one direction, and adjusts one or more color attributes of the same pixel differently when moved in another direction. The movement of this tool is in a straight line in some embodiments, while it is along an angular arc (e.g., along the circumference of a full or partial circle or elliptical shape) in other embodiments. This tool in some embodiments is a novel saturation tool that produces non-photorealistic effects by treating differently the highly saturated and lowly saturated pixels of an image. Specifically, in some embodiments, the saturation tool performs either (1) a positive de-saturation effect that de-saturates the low saturated pixels of an image while enhancing the saturation of the high saturated pixels, or (2) a negative de-saturation effect that de-saturates the high saturated pixels of the image while leaving intact or slightly modifying the saturation level of the lowly saturated pixels. For an original image that has some saturated pixels, both these effects produce grey looking images but the first effect has more saturated pixels and hence looks a bit more non-photorealistic because of it contains grey and colorful pixels.
Abstract:
A method includes obtaining a speech proficiency value indicator indicative of a speech proficiency value associated with a user of the electronic device. The method further includes in response to determining that the speech proficiency value satisfies a threshold proficiency value: displaying training text via the display device; obtaining, from the audio sensor, speech data associated with the training text, wherein the speech data is characterized by the speech proficiency value; determining, using a speech classifier, one or more speech characterization vectors for the speech data based on linguistic features within the speech data; and adjusting one or more operational values of the speech classifier based on the one or more speech characterization vectors and the speech proficiency value.
Abstract:
A method includes, while displaying a first set of text content via a display device, determining an engagement value that characterizes a level of user engagement with respect to the first set of text content. The method includes, in accordance with a determination that the engagement value satisfies a threshold, replacing the first set of text content with a second set of text content via the display device. The first set of text content is different from the second set of text content. The method includes in accordance with a determination that the engagement value does not satisfy the threshold, maintaining display of the first set of text content via the display device.
Abstract:
A method includes obtaining user input interaction data. The user input interaction data includes one or more user interaction input values respectively obtained from the corresponding one or more input devices. The user input interaction data includes a word combination. The method includes generating a user interaction-style indicator value corresponding to the word combination in the user input interaction data. The user interaction-style indicator value is a function of the word combination and a portion of the one or more user interaction input values. The method includes determining, using a semantic text analyzer, a semantic assessment of the word combination in the user input interaction data based on the user interaction-style indicator value and a natural language assessment of the word combination. The method includes generating a response to the user input interaction data according to the user interaction-style indicator value and the semantic assessment of the word combination.