Abstract:
A catadioptric reduction projection optical system having a first lens unit having negative refractive power and widening a light beam from a reticle, a prism type beam splitter for transmitting therethrough a light beam from the first lens unit, a concave reflecting mirror for returning the light beam emerging from the beam splitter to the beam splitter while converging it, and a second lens unit having positive refractive power and converging the light beam returned to the beam splitter and reflected by the beam splitter, and forming the reduced image of a pattern on the reticle on a wafer.
Abstract:
This invention intends to provide a catadioptric reduction projection optical system of a construction in which an on-axis light beam is used in a catadioptric system and resolving power is prevented from being deteriorated, and more particularly a catadioptric reduction projection optical system having a first lens unit G1 of negative refractive power for diffusing a light beam from a reticle 1, a semi-transparent mirror 5 for transmitting therethrough the light beam from the first lens unit G1, plane parallel plates 2, 3 and 4 disposed obliquely with respect to the optical axis between the first lens unit G1 and the semi-transparent mirror 5 for correcting aberrations attributable to the semi-transparent mirror 5, a concave reflecting mirror 7 for returning the light beam emerging from the semi-transparent mirror 5 to the semi-transparent mirror 5 while converging the light beam, and a second lens unit G3 of positive refractive power for converging the light beam returned to the semi-transparent mirror 5 and reflected by the semi-transparent mirror 5 and forming the reduced image of the pattern on the reticle 1 on a wafer 8.
Abstract:
According to one embodiment, a power source unit includes a substrate and a reflective body. The substrate includes a plurality of light-emitting elements mounted thereon. The reflective body includes a plurality of incident openings each corresponding to one of the plurality of light-emitting elements, an output opening to which light that has passed through the incident opening is output, and a plurality of reflective surfaces that expand from the incident opening toward the output opening. Reflective surfaces included in the plurality of reflective surfaces and positioned on an outermost side are provided to be adjacent to one another, and an angle is set so as to prevent reflective light of light emitted from the light-emitting elements from traveling toward an outer side in a reflective surface formed on the outer side.
Abstract:
A recessed luminaire includes a main body including a light source, a terminal base attachment member, which is fire-resistant and extending laterally from the main body, and a terminal base, which is disposed on a lower surface of the terminal base attachment member and to which power wires extending in parallel in a direction of extension of the terminal base attachment member are connected.
Abstract:
A down-light has a main body, a substrate, a plurality of LEDs, a reflector, a central boss, a central screw and peripheral screws. The main body has a mounting area. The substrate having LEDs is assembled in the mounting area. The reflector is attached to the main body with the substrate interposed therebetween, and reflects light emitted from the LEDs. The central boss is formed on the mounting area to correspond to a central part of the substrate. The central screw fixes the central part of the substrate to the central boss from the reflector side. Peripheral screws fix the substrate to the main body by pulling the reflector from the main body side.
Abstract:
The present invention provides a down light include a thermally-conductive main body, and a substrate which is mounted on this main body through a plurality of screw, has slits which are formed on straight lines connecting the screw with each other in directions orthogonal to the straight lines, and has a plurality of LEDs arranged thereon.