Abstract:
A silicon direct bonding method including preparing two silicon substrates having corresponding bonding surfaces, forming a trench in at least one bonding surface of the two silicon substrates, and thermally bonding the two silicon substrates to one another. The trench may be along a dicing line. The trench may communicate with an outer edge of the bonded substrates.
Abstract:
The present invention provides an apparatus for amplifying a polynucleotide, comprising a substrate, a microflow channel system disposed in the substrate and comprising a sample inlet port, a sample flow channel extending from the sample inlet port, and a polynucleotide polymerization reaction chamber in fluid communication with the sample flow channel, a first insulation groove formed around the reaction chamber, and a means for regulating a temperature of the reaction chamber. Accordingly, a multiple chamber device for amplifying a polynucleotide, comprising multiple polymerization reaction chambers formed in a substrate can be manufactured.
Abstract:
Disclosed are an inkjet print head and a method of manufacturing the same. An inkjet print head according to an aspect of the invention may include: an inkjet board having an ink passage therein; a cutting portion provided outside the ink passage of the inkjet board and having a cutting surface created by separation into head chip units of the inkjet board; and an auxiliary cutting portion provided from one surface of the cutting portion inwardly in a thickness direction of the inkjet board, and assisting the separation into head chip units of the inkjet board.
Abstract:
A method of forming a piezoelectric actuator on a vibration plate to provide a driving force to each of a plurality of pressure chambers includes forming a lower electrode on the vibration plate, forming a piezoelectric layer on the lower electrode at a position corresponding to each of the pressure chambers, forming a supporting pad on the lower electrode, the supporting pad contacting one end of the piezoelectric layer and extending away from the one end of the piezoelectric layer, forming an upper electrode extending from a top surface of the piezoelectric layer to a top surface of the supporting pad, and bonding the upper electrode to a driving circuit above the supporting pad to receive a voltage from the driving circuit.
Abstract:
Disclosed herein is an ejecting apparatus including: an upper body which includes an inlet through which ejectable fluid flows in from an external source, a channel which fluidly communicates with the inlet and through which the ejectable fluid flows, and an upper mounting portion which fluidly communicates with the channel and is opened downwardly; a lower body which includes a lower mounting portion which is opened upwardly to correspond to the upper mounting portion, and a nozzle slit which fluidly communicates with the lower mounting portion to eject the ejectable fluid to an outside, the lower body being fastened to the upper body, and a nozzle chip which is interposed between the upper mounting portion and the lower mounting portion to receive the ejectable fluid from the channel and discharge the ejectable fluid into the nozzle slit by being driven by an actuator.
Abstract:
A piezoelectric actuator of an inkjet head and a method of forming the piezoelectric actuator. The piezoelectric actuator is formed on a vibration plate to provide a driving force to each of a plurality of pressure chambers. The piezoelectric actuator includes a lower electrode formed on the vibration plate, a piezoelectric layer formed on the lower electrode at a position corresponding to each of the pressure chambers, a supporting pad formed on the lower electrode, the supporting pad contacting one end of the piezoelectric layer and extending away from the one end of the piezoelectric layer, and an upper electrode extending from a top surface of the piezoelectric layer to a top surface of the supporting pad. The upper electrode is bonded to a driving circuit above the supporting pad to receive a voltage from the driving circuit. The piezoelectric layer may have substantially the same length as the pressure chamber. The supporting pad may be formed of a photosensitive polymer and may have substantially the same height as the piezoelectric layer. The upper electrode may include a first portion formed on the piezoelectric layer and a second portion formed on the supporting pad, and the second portion may be wider than the first portion.
Abstract:
Provided are a piezoelectric inkjet printhead and a method of manufacturing the same. The piezoelectric inkjet printhead includes first and second single-crystalline silicon substrates. An ink flow path is disposed in a first surface of the first substrate. The ink flow path includes an ink introduction port, a manifold for supplying ink, a plurality of pressure chambers filled with ink to be ejected, a plurality of restrictors for connecting the manifold with the plurality of pressure chambers, respectively, and a plurality of nozzles for ejecting ink. The second substrate is bonded to the first substrate to thereby complete the ink flow path. A plurality of piezoelectric actuators are disposed on a second surface of the first substrate to correspond to each of the pressure chambers and provide drivability required for ejecting ink to the respective pressure chambers. In this construction, aligning the first and second substrates is unnecessary, so that the manufacturing process can be simplified, the manufacturing cost can be reduced, and ink ejecting performance can be improved.
Abstract:
In a piezoelectric ink-jet printhead, and a method of manufacturing a nozzle plate, the piezoelectric ink-jet printhead includes a flow path plate having an ink flow path including pressure chambers to be filled with ink to be ejected, a piezoelectric actuator formed on an upper surface of the flow path plate and for supplying a driving force for ink ejection to the pressure chambers, and a nozzle plate bonded to a lower surface of the flow path plate including nozzles for ejecting ink from the pressure chambers bored through the nozzle plate. The printhead may further include a heater formed on a lower surface of the nozzle plate for heating ink in the ink flow path and/or a temperature detector formed on a lower surface of the nozzle plate or on an upper surface of the flow path plate.
Abstract:
A silicon direct bonding (SDB) method by which void formation caused by gases is suppressed. The SDB method includes: preparing two silicon substrates having corresponding bonding surfaces; forming trenches having a predetermined depth in at least one bonding surface of the two silicon substrates; forming gas discharge outlets connected to the trenches on at least one of the two silicon substrates to vertically penetrate the bonding surface; cleaning the two silicon substrates; closely contacting the two silicon substrates to each other; and thermally treating the two substrates to bond them to each other. The trenches are formed along at least a part of a plurality of dicing lines, and both ends of the trenches are clogged. Gases generated during a thermal treatment process can be smoothly and easily discharged through the trenches and the gas discharge outlet such that a void is prevented from being formed in the junctions of the two silicon substrates due to the gases.
Abstract:
A nozzle plate for an inkjet head and a method of manufacturing the nozzle plate includes a silicon substrate having a nozzle, a thermally oxidized silicon layer formed on an outer surface of the silicon substrate and an inner wall of the nozzle, an adhesion layer deposited on the thermally oxidized silicon layer formed on the outer surface of the silicon substrate and formed of silicon oxide, and an ink-repellent coating layer deposited on the adhesion layer.