摘要:
A design structure embodied in a machine readable medium used in a design process and an integrated circuit for high performance SRAM (Static Random Access Memory) read bypass for BIST (built-in self-test). The design structure and integrated structure includes a dynamic to static conversion unit for a read output of an SRAM array, and a test bypass unit integrated into the dynamic to static conversion unit, so as to allow the read output of the SRAM array to pass through in a non-test mode without impacting performance, and bypass the read output of the SRAM array and allow a test signal to pass though in a test mode.
摘要:
A low power level shifter circuit for high performance integrated circuits includes an input inverter operating in a domain of a first voltage supply and receiving an input signal and a design structure on which the subject circuit resides is provided. An output stage operating in a domain of a higher second voltage supply includes a first output inverter connected to the input inverter and a second output inverter connected in series with the first output inverter. The second output inverter provides a level shifted output signal having a voltage level corresponding to the second voltage supply. A series connected finisher transistor and finisher control transistor are connected between the second voltage supply and an input to the first output inverter. The finisher control transistor is activated responsive to the input signal. A path control transistor controls a path between the first voltage supply and the input inverter. The path control transistor being activated responsive to the level shifted output signal.
摘要:
A low power level shifter circuit includes an input inverter operating in a domain of a first voltage supply. The input inverter receives an input signal and provides a first inverted signal. An output inverter operating in a domain of a second voltage supply coupled to the input inverter and provides an output signal having a voltage level corresponding to the second voltage supply and a logic value corresponding to the input signal. The second voltage supply is higher than the first voltage supply. A leakage current control circuit includes a finisher transistor connected between the second voltage supply and the input to the output inverter and a path control transistor control a path between the first voltage supply and the input inverter.
摘要:
A method implements static random access memory (SRAM) cell write performance evaluation. A SRAM cell write performance evaluation circuit includes a SRAM core where each wordline is connected to only one bit column. A ring oscillator circuit is used to generate wordline pulses. A state machine controls operations for the SRAM cell write performance evaluation circuit including the ring oscillator circuit and the SRAM core. A control signal is applied to the state machine to select a first write operation, where the circuit simultaneously writes all the cells to a known state with wide wordlines to ensure all cells are written. Then a second write operation is selected, and all the wordlines are launched simultaneously to write the cells to the opposite state. From these write operations, a required wordline pulse width to write the cell is identified.
摘要:
A method and apparatus for implementing static random access memory (SRAM) cell write performance evaluation, and a design structure on which the subject circuit resides are provided. ASRAM core includes each wordline connected to only one bit column. A ring oscillator circuit is used to generate wordline pulses. A state machine controls operations for the SRAM cell write performance evaluation circuit including the ring oscillator circuit and the SRAM core. A control signal is applied to the state machine to select a first write operation, where the circuit simultaneously writes all the cells to a known state with wide wordlines to ensure all cells are written. Then a second write operation is selected, and all the wordlines are launched simultaneously to write the cells to the opposite state. From these write operations, a required wordline pulse width to write the cell is identified.
摘要:
A SRAM cell write performance evaluation circuit includes a SRAM core where each wordline is connected to only one bit column. A ring oscillator circuit is used to generate wordline pulses. A state machine controls operations for the SRAM cell write performance evaluation circuit including the ring oscillator circuit and the SRAM core. A control signal is applied to the state machine to select a first write operation, where the circuit simultaneously writes all the cells to a known state with wide wordlines to ensure all cells are written. Then a second write operation is selected, and all the wordlines are launched simultaneously to write the cells to the opposite state. From these write operations, a required wordline pulse width to write the cell is identified.
摘要:
A method and enhanced Static Random Access Memory (SRAM) redundancy circuit reduce wiring and the required number of redundant elements. A bitline redundancy mechanism allows the swapping of a pair of bitlines for a redundant pair of bit columns. Two of the adjacent bitlines are swapped out at a time, one even and one odd. The swap is accomplished by steering the data around the bad columns and adding redundant columns on the end that are steered in when needed.
摘要:
A method and enhanced Static Random Access Memory (SRAM) redundancy circuit reduce wiring and the required number of redundant elements. A bitline redundancy mechanism allows the swapping of a pair of bitlines for a redundant pair of bit columns. Two of the adjacent bitlines are swapped out at a time, one even and one odd. The swap is accomplished by steering the data around the bad columns and adding redundant columns on the end that are steered in when needed.
摘要:
A method, an apparatus, and a computer program product are provided for flood mode implementation of SRAM cells that employ a continuous bitline local evaluation circuit. Flood mode testing is used to weed out marginal SRAM cells by stressing the SRAM cells. Flood mode is induced by beginning with a normal write operation. After new data values have been forced into the SRAM cells, then the write signal is chopped off. A delay block keeps the wordline signal at the high supply, and the SRAM cells go into flood mode. At this juncture marginal cells can be easily detected and later mapped to redundant cells.