Abstract:
A scanning monochromator system which uses a directly coupled stepper motor to drive a spectral-dispersion element. The spectral-dispersion element is directly coupled to the output shaft of the motor. The movement of the motor is controlled with an electronic circuit that controls the motor winding current. The circuit includes a power driven section, a pulse-width modulator section and a computer section. The power driven section switches electrical current through the motor windings and can produce a variable pulse-width ranging from 0 to 100 percent modulation. The pulse-width modulator section accepts values from the computer section and converts these values into variable pulse-width signals for use by the power driver section. The computer section supplies values to the pulse-width modulator section based upon requirements for the motor movement and position. The required motor position is determined by the type of spectral-dispersion element and the desired wavelength selection of the monochromator.
Abstract:
A multi-slit type spectrometer includes a light diffracter which diffracts an incident light according to wavelengths; an optical shutter array member including a plurality of optical shutter elements arranged in correspondence with wavelength bands diffracted by the light diffracter, operable to transmit an incident ray according to an applied voltage, and made of PLZT. A zone of a given number of adjacent optical shutter elements is applied with a voltage corresponding to the wavelength bands of the rays incident upon the zone of adjacent optical shutter elements at a specified timing so that the rays respectively pass through or are reflected at the optical shutter elements. A signal processor receives the ray which has passed through or has been reflected at each optical shutter element and outputs an electrical signal according to the intensity of the received ray. A calculator calculates the intensity of the incident ray for each wavelength band in accordance with the electrical signal output from the signal processor and the specified applying timing.
Abstract:
A dewar cooled piezo electric activated beam splitter permits a filtered dimensional multispectral multidetector staring imager to operate as a target acquisition and recognition device as well as a detector and classifier of unknown chemical vapors or other targets with spectral fingerprint.
Abstract:
A monochromator for examining very narrow band ranges of a light spectrum has a fixed inlet slot, a grid illuminated by said slot and rotatively driven by a grid drive, a fixed outlet slot arranged in the angular area of the generated spectrum and at least one cutoff filter arranged in the path of the rays, continuously and swivelingly driven by the grid drive transversely to the path of the rays for filtering out light of orders other than the observed order. The cutoff filter is coupled to the grid drive in such a way that it is synchronically swiveled over the same angle as the grid, covering the desired spectral range.
Abstract:
The monochromator has, as a beam-diffracting element, a scanning mirror (3) which is fastened on a vibratory spring, preferably a spring-steel strap (8), clamped on one side. The vibratory spring is oscillated by way of an electromechanical self-energized oscillation circuit, a sensor (11a, 11b) which detects the deflection of the vibratory spring (8) is provided and whose output signal is used as a feedback signal for maintaining the oscillation of the vibratory spring (8). The amplitude of oscillation of the oscillating element can likewise be varied. With such a design it is possible to produce simply and inexpensively a monochromator with which a considerable spectral range can be swept and, in addition, the width and position of said spectral range can be variably adjusted.
Abstract:
An apparatus comprising two light sources, a composite detector, a fixed grating, two independent slits and a mask with a multiplicity of slits analyzes the spectral composition of samples rapidly and accurately and can transmit such information to other locations by modem. A first light source produces a spectrum with broad spectral range, a second light source produces a spectrum with multiple sharp spectral features. The first and second light sources are used to produce a sample spectrum and a reference spectrum respectively. A portion of the light from each of the two sources is used to calibrate the intensity of the instrument at each wavelength measurement. Rapid scanning is achieved by continuous multiplexing of each wavelength of light to the detector using a rotating mask with a multiplicity of slits. Continuous wavelength calibration is achieved by using the reference spectrum to encode a wavelength scale as spectrum is acquired. The spectral data can be transmitted by the said apparatus to other locations by modem. The said modem enables a multiplicity of the said apparatus to be used at various locations to perform a common analysis function. For example, a city wide medical network of analyzers may be set up to communicate with a central data base, where analyses on clinical assays may be performed by powerful dedicated computers. In another example, a network of the said apparatus may be set up in an integrated manufacturing environment such as a tobacco manufacturing plant or pharmaceutical manufacturing plant, to accumulate data at several points in the manufacturing process. The apparatus, may be used to rapidly scan and analyze discrete moving samples for composition analyses, density determination, moisture determination, color, and surface uniformity.
Abstract:
Method and apparatus for analyzing energy emanating from a source by converting energy from the source into spectral components distributed according to frequency along a flat field, combining the spectral components into a beam, detecting the beam which combines the spectral components and demodulating the spectral components.
Abstract:
A multichannel imaging spectrometer for airborne geological, geophysical and environmental surveys in a moving vehicle. An optical scanner employs a rotating polygon allowing reduced scan optics with increased data acquisition efficiency. Multiple spectrometers integrally registered allow channelization of the received signal to optimize noise performance in the range from ultraviolet through infrared. Output data is in a form for recording and real time display. A staring mode configuration provides enhanced sensitivity by using a two-dimensional detector array and adjustable mirror orientation. A scanning mode embodiment employs a two-dimensional detector array with time delay integration and three-dimensional storage of temporal spatial data and spectral wavelength and intensity. Thus, all channels are acquired simultaneously, resulting in perfect band-to-band registration with continuous spectral curves over the field of view. On-board real-time absolute radiometric calibration is provided by an integral reflective white plate and radiometrically and spectrally calibrated light source illuminating a column of detectors independent of illumination by the target during the scan cycle. Dark current measurement is achieved in both the scan and stare modes by an auxiliary detector column.
Abstract:
A positioning mechanism support structure mounted for movement between first and second predetermined positions in a spectroanalytical system includes relative to a reference member by a plurality of stabilizing coupling assemblies, and drive structure for producing motion of the support structure relative to the reference structure between first and second stop structures that define the first and second predetermined positions, respectively. Interlock structure responds to the drive force generated by the drive structure and de-energizes the drive structure in response to the drive force applied to that support structure exceeding a predetermined threshold value.
Abstract:
An in-line spectral method adapted for use with a single-beam reference spectrometer scanning a sample, the method comprising the steps of (a) scanning with a single-beam spectrometer (b) rotating a wheel in synchronization and in an optical path with the single-beam spectrometer of step (a), the wheel having open alternating with segments comprising reference material, (c) producing with step (b) alternate spectral scans as of the spectrometer and the sample, and of the spectrometer, the sample and said reference material, (d) comparing said spectral scans of step (c) in order to extract the spectrum of said reference material; and (e) using said extracted spectrum for real-time, dynamic spectral compensation, to result in absolute correct sample spectrum.