Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive activation signaling for a configuration of a semi-persistent transmission procedure; activate the semi-persistent transmission procedure based at least in part on receiving the activation signaling; and deactivate the semi-persistent transmission procedure based at least in part on a deactivation time. In some aspects, the UE may activate the semi-persistent transmission procedure based at least in part on transmitting uplink feedback. Numerous other aspects are provided.
Abstract:
Methods and apparatuses described herein provide a physical downlink control channel (PDCCH) candidate hopping function that reduces collisions between PDCCH candidates, particularly between PDCCH candidates associated with reduced capability user equipment (UE). For example, the hopping function may be implemented as part of a PDCCH candidate to control channel element (CCE) function or may be applied separately from the PDCCH candidate to CCE function. The hopping function may reduce persistent collisions between PDCCH candidates by correlating the mapping behavior with a value that changes over time. Some techniques and apparatuses described herein provide signaling for configuration and activation/deactivation/modification of the hopping pattern. Thus, collisions between PDCCH candidates are reduced, thereby conserving computing resources and wireless communication resources. Furthermore, the reduction of collisions may improve performance of UEs with reduced PDCCH capabilities, such as reduced-capability UEs. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine a set of modulations for a random access message associated with a two-step random access channel (RACH) procedure. The set of modulations may be either a first set of modulations or a second set of modulations that is different from the first set of modulations. The set of modulations may be determined based at least in part on whether a signal strength satisfies a signal strength threshold. The UE may transmit the random access message based at least in part on the determined set of modulations. The random access message may include a physical uplink shared channel modulated using the determined set of modulations. Numerous other aspects are provided.
Abstract:
Certain aspects of the present disclosure provide techniques for random access channel (RACH) occasion assignment. A method that may be performed by a user equipment (UE) includes receiving, from a base station (BS), a plurality of synchronization signal blocks (SSBs), each SSB associated with a different transmit beam of the BS. The method further includes transmitting a random-access preamble on a first RACH occasion associated with a first SSB of the plurality of SSBs, wherein the first RACH occasion is one of a plurality of RACH occasions associated with the plurality of SSBs, wherein the first SSB is associated with a first number of the plurality of RACH occasions and a second SSB of the plurality of SSBs is associated with a second number of the plurality of RACH occasions, wherein the first number is different than the second number.
Abstract:
Techniques for reporting channel quality information (CQI) in a multi-carrier wireless communication system are disclosed. In one aspect, a user equipment determines one or more reporting groups, each comprising a plurality of component carriers which are configured for the user equipment. The user equipment may detect a trigger from a base station that selects a reporting group and may respond to the trigger by sending CQI for at least the activated component carriers in the selected reporting group.
Abstract:
Certain aspects of the present disclosure provide procedures for managing secondary eNB (SeNB) radio link failure (S-RLF) in dual connectivity scenarios. A user equipment (UE) may establish communication with a Master Evolved Node B (MeNB) and a Secondary eNB (SeNB). The UE may detect a Radio Link Failure (RLF) of a connection with the SeNB and may transmit an indication of the RLF to the MeNB, in response to the detection. The MeNB may take at least one action to manage the RLF, in response to receiving the indication of the RLF, for example, including transmitting a reconfiguration command to the UE. The SeNB may also detect the RLF and transmit an indication of the RLF to the MeNB over a backhaul connection, in response to the detection.
Abstract:
Various aspects described herein relate to communicating using dynamic uplink and downlink transmission time interval (TTI) switching in a wireless network. A notification can be received from a network entity of switching a configurable TTI from downlink communications to uplink communications. The configurable TTI can be one of a plurality of TTIs in a frame structure that allows dynamic switching of configurable TTIs between downlink and uplink communications within a frame. Additionally, uplink communications can be transmitted to the network entity during the configurable TTI based at least in part on the notification.
Abstract:
The described apparatus and methods may include a controller configured to determine power required for at least one of a plurality of carriers, and generate at least one of a plurality of power control commands for at least one of the plurality of carriers based on the determination.
Abstract:
Methods and apparatus for efficient transmission of data by half-duplex transceivers in satellite communication systems are provided. Time reference for the return link is skewed or time-lagged relative to the time reference for the forward link to reduce the amount of guard time required to separate return link transmission from forward link reception by the half-duplex transceiver of a user terminal. The guard time is determined based on a maximum differential round-trip propagation delay and transition times of the half-duplexer transceiver to switch between transmit and receive modes. In a satellite communication system in which a large number of active user terminals are present in a beam coverage, random time offsets are applied to spread approximately equal traffic loads across the time offsets.
Abstract:
The disclosure provides techniques for signaling TDD configurations with downlink control information (DCI). A user equipment receives DCI, and determines a first portion of the DCI corresponding to a first TDD uplink-downlink configuration for a first group of component carriers (CCs) of a plurality of carrier groups and a second portion of the DCI corresponding to a second TDD uplink-downlink configuration for a second group of CCs of the plurality of carrier groups, where a bit length of the first portion is different from a bit length of the second portion. The UE determines the first TDD uplink-downlink configuration based on the first portion and the second TDD uplink-downlink configuration based on the second portion, where each of the first and second uplink-downlink configurations corresponds to an available TDD uplink-downlink configuration for carriers in a respective group of CCs.