Abstract:
The present disclosure describes a method, an apparatus, and a computer readable medium for reporting channel state information (CSI) feedback by a user equipment (UE). For example, the method may include identifying a plurality of reference signal (RS) configurations, determining a preferred RS configuration from the plurality of the RS configurations identified at the UE, and reporting the preferred RS configuration to the node. The present disclosure further includes receiving channel state information (CSI) feedback at a node which includes transmitting a plurality of reference signals to a plurality of user equipments (UEs) and receive a preferred RS configuration from at least a UE of the plurality of the UEs.
Abstract:
Certain aspects of the present disclosure relate to techniques for reducing the decoding complexity for low cost devices (e.g., low cost UEs). One technique may include simplifying the PDCCH format. This may include generating a compact DCI format for transmitting DCI to a low cost device. The compact DCI format may correspond to at least one standard DCI format used by a regular UE and may comprise a reduced number of bits when compared to the standard DCI format. Another technique may include reducing the number of blind decodes. This technique may include selecting a set of resources for transmitting DCI from a limited set of decoding candidates, such that a receiving low cost device need only perform blind decodes for the limited set of decoding candidates.
Abstract:
Techniques for overlapping cluster architecture for coordinated multipoint (CoMP) are provided. According to certain aspects, a method of wireless communication by a transmission point is provided. The method generally includes receiving, from a first base station, a first signal for a first user equipment (UE) to transmit over the air, receiving, from a second base station, a second signal for a second UE to transmit over the air, and combining the first and the second signals from the first and second base stations and transmitting the combined signal to the first and second UE.
Abstract:
Various aspects of utilizing narrowband internet of things (NB IOT) communication are still under development. According to an aspect of the disclosure, the apparatus may be a user equipment (UE) using digital modulation for wireless communication via NB IOT communication in an unlicensed spectrum. The UE utilizes a plurality of downlink carriers in the unlicensed spectrum occupying at least a first minimum bandwidth by the plurality of downlink carriers and a plurality of uplink carriers in the unlicensed spectrum occupying at least a second minimum bandwidth with the plurality of uplink carriers. The UE performs communication using one or more of the plurality of downlink carriers and the plurality of uplink carriers.
Abstract:
The present disclosure enables a base station to group UEs based on similar PMIs for a combined transmission. The apparatus may receive a plurality of PMIs from a plurality of UEs. In one aspect, each PMI in the plurality of PMIs may be received from a different UE. The apparatus may also assign each UE of the plurality of UEs to a UE group. In another aspect, each UE group may be associated with a different PMI set in a plurality of PMI sets. The apparatus may further assign a transmission scheme to each UE group. In one configuration, the apparatus may determine one or more preferred spatial layers for each UE (e.g., based on the PMIs) assigned to a UE group, and schedule a combined transmission for the UE group based on the determined one or more spatial layers.
Abstract:
Certain aspects of the present disclosure provide techniques that may be used to help enable low latency communications between a user equipment (UE) and a base station (BS) using quick uplink channels that enable a reduced transmission time interval (TTI). An example method generally includes identifying a plurality of slots in a subframe, receiving a resource configuration for an uplink channel, wherein the resource configuration is associated with a first slot of the plurality of slots, determining a resource for transmitting the uplink channel in a second slot of the plurality of slots, wherein the resource is determined based on the resource configuration associated with the first slot of the plurality of slots, and transmitting the uplink channel in the second slot using the determined resource.
Abstract:
Due to the limited dimension of a NB that may be used by multiple users, as well as possible large coverage areas, timing offset estimation may be outside of NCP. The inaccuracy in the timing estimate can be improved by using more than one tone hopping distance for PRACH. An apparatus may then transmit a first and second tone of the PRACH at a first hopping distance from the first tone. The apparatus may then transmit a third tone of the PRACH and a fourth tone of the PRACH at a second hopping distance from the third tone. The second hopping distance may be greater than first hopping distance. The apparatus may also transmit an additional tone of the PRACH using a random hopping distance. A receiving apparatus may receive the transmitted PRACH and determine a phase estimation based on the sets of tones having different hopping distances.
Abstract:
Certain aspects of the present disclosure provide methods for wireless communications by a base station and a user equipment in a network. An exemplary method generally includes performing a discovery procedure to identify one or more devices through which the UE may indirectly communicate with a base station in the network and deciding based on one or more criteria whether to communicate with the base station directly or to communicate with the base station indirectly via a device identified by the discovery procedure. According to certain aspects, when a UE is in communication with a network indirectly, the network might page the UE directly, indirectly, or both.
Abstract:
Half-duplex (HD) operations enable low cost implementations of LTE terminals. Traditionally, HD operations may be linked to a particular frequency band which may not allow a mix of full-duplex (FD) and HD terminals in the same frequency band. Therefore, certain aspects of the present disclosure provide techniques for enabling coexistence, in a given frequency band, of HD and FD terminals, by introducing frequency bands designated for HD operation and overlapping existing frequency bands designated for FD operation.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives control information from a first cell, generates an uplink transmission to a second cell based in part on the received control information from the first cell, receives a transmission power setting based on the uplink transmission to the second cell, and transmits in uplink using the transmission power to the second cell.