Abstract:
Various techniques are provided for Location Services (LCS) Assistance Data broadcast, for example for implementation in LTE and LTE-A systems. The embodiments described herein may use the LPP/LPPe positioning protocol, by making use of existing unsolicited Provide Assistance Data (PAD) messages. Embodiments avoid the need to define and implement a separate broadcast Assistance Data protocol. Additional exemplary embodiments for scheduling and verifying of the broadcast Assistance Data messages are described herein.
Abstract:
Techniques for access point acquisition using the location of a mobile device and probabilistic self-learning are described herein. An example of a method of scanning for an access point with a mobile device includes detecting a serving cell, determining a location for the mobile device, determining a maximum coverage area of an access point that is associated with the serving cell, determining whether the location of the mobile device is within the maximum coverage area, and performing a fast rate scan for the access point if the location is within the maximum coverage area.
Abstract:
The subject matter disclosed herein relates to a system and method for negotiating a version of Secure User Plane Location (SUPL) between a network entity and a SUPL enabled terminal. In a particular implementation, a SUPL initiation message is transmitted from a network entity to a SUPL entity, where the SUPL initiation message identifies a plurality of SUPL versions capable of supporting a desired service. A response is received from the SUPL entity that is based, at least in part, on an ability of the SUPL entity to support at least one of the plurality of versions.
Abstract:
Example methods, apparatuses, or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate or support one or more operations or techniques for utilizing a reference signal for indoor positioning, such as for use in or with a mobile communication device, for example. In an implementation, a reference signal may be focused into a directed beam, for example using a phased antenna array, and rotated electronically through a sequence of directional angles in a horizontal plane. A mobile device may determine a most probable directional angle from one or more transmitters transmitting a directional beam, measure one or more parameters for each directional angle and determine a location estimate using, for example triangulation.
Abstract:
The subject matter disclosed herein relates in one particular implementation to a method, apparatus, and/or system for transmitting, by a location server, a location identifier to a mobile device. The location identifier may be transmitted from the mobile device to one or more trusted entities. Access to a location estimate of the mobile device may be selectively authorized at least partially in response to a request received at the mobile device from the location server including the location identifier.
Abstract:
Techniques for routing an emergency call originated by a mobile station via a femto access point (FAP) in a wireless network and for locating the mobile station are described. In an aspect, the emergency call may be routed to an appropriate emergency center based on location information for the FAP. In one design, the location information for the FAP may include a macro cell identity (ID) and/or a macro Mobile Switching Center (MSC) ID determined based on the FAP location. The macro cell ID and/or the macro MSC ID may be assigned to the FAP and used to access a database, which may store routing information for emergency centers versus cell IDs and MSC IDs. In another design, the location information for the FAP may include a location estimate for the FAP. The location estimate may be used to access a geographic database, which may store routing information for emergency centers for different geographic areas.
Abstract:
The subject matter disclosed herein relates to a system and method for negotiating a version of Secure User Plane Location (SUPL) between a network entity and a SUPL enabled terminal. In a particular implementation, a SUPL initiation message is transmitted from a network entity to a SUPL entity, where the SUPL initiation message identifies a plurality of SUPL versions capable of supporting a desired service. A response is received from the SUPL entity that is based, at least in part, on an ability of the SUPL entity to support at least one of the plurality of versions.