Abstract:
A multistage interconnect network (MIN) capable of supporting massive parallel processing, including point-to-point and multicast communications between processor modules (PMs) which are connected to the input and output ports of the network. The network is built using interconnected switch nodes arranged in 2 .left brkt-top. log.sub.b N .right brkt-top. stages, wherein b is the number of switch node input/output ports, N is the number of network input/output ports and .left brkt-top. log.sub.b N .right brkt-top. indicates a ceiling function providing the smallest integer not less than log.sub.b N. The additional stages provide additional paths between network input ports and network output ports, thereby enhancing fault tolerance and lessening contention.
Abstract translation:能够支持大规模并行处理的多级互连网络(MIN),包括连接到网络的输入和输出端口的处理器模块(PM)之间的点对点和多点通信。 网络采用2 +539 logb N + 538级布置的互连交换机节点构建,其中b为交换节点输入/输出端口数,N为网络输入/输出端口数,+539 logb N +538表示 提供不小于logb N的最小整数的天花板功能。附加级提供网络输入端口和网络输出端口之间的附加路径,从而增强容错能力和减少争用。
Abstract:
A spectrophotometer which is highly manufacturable at minimum cost nevertheless provides precision of measurement of spectra components of light which is projected therein by maintaining precise optical alignment of optical and electrical components thereof. These components are mounted in a module which is contained in a housing having an entrance aperture which defines an object area for light the spectrum of which is measured by a photodetector in the module at an image area. The module has a base plate provided by a printed circuit board on which a closed wall encompasses an area (a corral) on one side of the circuit board. The wall is a one piece structure which extends to the vicinity of the edge of the board. It is assembled with the board as a unitary structure so that the assembly is made torsionally rigid and resists bending in the plane of the board. The module may be of sufficiently small size so as to be located in a housing which is hand held, thereby providing a hand-held spectrophotometer.
Abstract:
A spectrophotometer employs an array of optical elements to focus light from at least one, but preferably two light sources onto a fiber optic beam splitter that provides a pickup for a selected bandwidth of wavelengths of light in the spectral pattern. The spectral pattern can include wavelengths in the visible, near infrared and ultraviolet spectrum. To create the spectral pattern, two reflecting prisms having spherical surfaces are used, and the optical elements are arranged so that the two spectral bands from each prism are longitudinally aligned to create the spectral pattern. The prisms are on a motor driven pivot mount so that the spectral pattern may be swept across the pickup. The optical elements and the pickup are sized so that the selected bandwidth is less than twenty nanometers over the spectral pattern. The pickup is formed by a single row of the ends of fiber optic strands which are then collimated into two bundles to transmit a test component and a reference component of light. The sample cell is somewhat elongated, and a lens is interposed in the test component path before the sample cell, and this lens is sized to focus light axially through the sample cell without impinging on the sidewalls. Photodiode detectors, comparator circuitry and a controller are included.
Abstract:
A scanning monochromator system which uses a directly coupled stepper motor to drive a spectral-dispersion element. The spectral-dispersion element is directly coupled to the output shaft of the motor. The movement of the motor is controlled with an electronic circuit that controls the motor winding current. The circuit includes a power driven section, a pulse-width modulator section and a computer section. The power driven section switches electrical current through the motor windings and can produce a variable pulse-width ranging from 0 to 100 percent modulation. The pulse-width modulator section accepts values from the computer section and converts these values into variable pulse-width signals for use by the power driver section. The computer section supplies values to the pulse-width modulator section based upon requirements for the motor movement and position. The required motor position is determined by the type of spectral-dispersion element and the desired wavelength selection of the monochromator.
Abstract:
A multi-slit type spectrometer includes a light diffracter which diffracts an incident light according to wavelengths; an optical shutter array member including a plurality of optical shutter elements arranged in correspondence with wavelength bands diffracted by the light diffracter, operable to transmit an incident ray according to an applied voltage, and made of PLZT. A zone of a given number of adjacent optical shutter elements is applied with a voltage corresponding to the wavelength bands of the rays incident upon the zone of adjacent optical shutter elements at a specified timing so that the rays respectively pass through or are reflected at the optical shutter elements. A signal processor receives the ray which has passed through or has been reflected at each optical shutter element and outputs an electrical signal according to the intensity of the received ray. A calculator calculates the intensity of the incident ray for each wavelength band in accordance with the electrical signal output from the signal processor and the specified applying timing.
Abstract:
A dewar cooled piezo electric activated beam splitter permits a filtered dimensional multispectral multidetector staring imager to operate as a target acquisition and recognition device as well as a detector and classifier of unknown chemical vapors or other targets with spectral fingerprint.
Abstract:
A monochromator for examining very narrow band ranges of a light spectrum has a fixed inlet slot, a grid illuminated by said slot and rotatively driven by a grid drive, a fixed outlet slot arranged in the angular area of the generated spectrum and at least one cutoff filter arranged in the path of the rays, continuously and swivelingly driven by the grid drive transversely to the path of the rays for filtering out light of orders other than the observed order. The cutoff filter is coupled to the grid drive in such a way that it is synchronically swiveled over the same angle as the grid, covering the desired spectral range.
Abstract:
The monochromator has, as a beam-diffracting element, a scanning mirror (3) which is fastened on a vibratory spring, preferably a spring-steel strap (8), clamped on one side. The vibratory spring is oscillated by way of an electromechanical self-energized oscillation circuit, a sensor (11a, 11b) which detects the deflection of the vibratory spring (8) is provided and whose output signal is used as a feedback signal for maintaining the oscillation of the vibratory spring (8). The amplitude of oscillation of the oscillating element can likewise be varied. With such a design it is possible to produce simply and inexpensively a monochromator with which a considerable spectral range can be swept and, in addition, the width and position of said spectral range can be variably adjusted.
Abstract:
An apparatus comprising two light sources, a composite detector, a fixed grating, two independent slits and a mask with a multiplicity of slits analyzes the spectral composition of samples rapidly and accurately and can transmit such information to other locations by modem. A first light source produces a spectrum with broad spectral range, a second light source produces a spectrum with multiple sharp spectral features. The first and second light sources are used to produce a sample spectrum and a reference spectrum respectively. A portion of the light from each of the two sources is used to calibrate the intensity of the instrument at each wavelength measurement. Rapid scanning is achieved by continuous multiplexing of each wavelength of light to the detector using a rotating mask with a multiplicity of slits. Continuous wavelength calibration is achieved by using the reference spectrum to encode a wavelength scale as spectrum is acquired. The spectral data can be transmitted by the said apparatus to other locations by modem. The said modem enables a multiplicity of the said apparatus to be used at various locations to perform a common analysis function. For example, a city wide medical network of analyzers may be set up to communicate with a central data base, where analyses on clinical assays may be performed by powerful dedicated computers. In another example, a network of the said apparatus may be set up in an integrated manufacturing environment such as a tobacco manufacturing plant or pharmaceutical manufacturing plant, to accumulate data at several points in the manufacturing process. The apparatus, may be used to rapidly scan and analyze discrete moving samples for composition analyses, density determination, moisture determination, color, and surface uniformity.
Abstract:
A multichannel imaging spectrometer for airborne geological, geophysical and environmental surveys in a moving vehicle. An optical scanner employs a rotating polygon allowing reduced scan optics with increased data acquisition efficiency. Multiple spectrometers integrally registered allow channelization of the received signal to optimize noise performance in the range from ultraviolet through infrared. Output data is in a form for recording and real time display. A staring mode configuration provides enhanced sensitivity by using a two-dimensional detector array and adjustable mirror orientation. A scanning mode embodiment employs a two-dimensional detector array with time delay integration and three-dimensional storage of temporal spatial data and spectral wavelength and intensity. Thus, all channels are acquired simultaneously, resulting in perfect band-to-band registration with continuous spectral curves over the field of view. On-board real-time absolute radiometric calibration is provided by an integral reflective white plate and radiometrically and spectrally calibrated light source illuminating a column of detectors independent of illumination by the target during the scan cycle. Dark current measurement is achieved in both the scan and stare modes by an auxiliary detector column.