Abstract:
Methods and devices are described for forwarding, managing, and/or detecting timing information for device-to-device discovery. Timing information may be received from a base station. A timing signal including the timing information may be transmitted. The timing signal may be transmitted during a sub-frame reserved for device-to-device discovery. Timing information for a base station may be transmitted to a user equipment (UE). Instructions to transmit a timing signal including the timing information during a sub-frame reserved for device-to-device discovery are also transmitted to the UE. Information indicating a timing of sub-frames reserved for device-to-device discovery by a neighboring base station may be received from a serving base station. A timing signal may be detected during at least one of the sub-frames reserved for device-to-device discovery. The timing signal may include timing information for the neighboring base station.
Abstract:
The herein disclosed apparatus, systems, and methods use Almost Blank Subframes (ABS) to manage interference between D2D and WAN transmissions. In particular, an eNodeB is disclosed comprising a controller module operable to obtain an indicator of a need for a quiescent subframe, and to select responsively thereto a subframe of a communication frame, and allocate the selected subframe as an Almost Blank Subframe (ABS). The base station includes a transceiver module operable to communicate the ABS over an air interface, and to send a misinformation signal to another eNodeB device indicating the ABS is not almost blank.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus allocates K blocks of subframes for WAN and peer-to-peer communications in a discovery period T and remaining subframes in the discovery period T for WAN communications and allocates a first set of subframes for peer discovery and a second set of subframes for the WAN communications in each block of the K blocks.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. A UE for wireless communication determines resource elements, within at least one resource block in a downlink subframe, that carry reference signals from a base station. The UE maps at least one of data or control information to the at least one resource block, punctures the at least one of the data or the control information from the resource elements determined to carry the reference signals, and transmits the at least one resource block to a second UE.
Abstract:
This disclosure provides systems, methods, and devices for wireless communication that support enhanced RIS configuration operations. In a first aspect, a method of wireless communication includes receiving a discovery beacon from a RIS controller of a vehicle. The method also include transmitting acknowledgement information in response to the discovery beacon. The method further includes receiving reconfigurable intelligent surface (RIS) configuration information for the vehicle based on the transmission of the acknowledgement information. The RIS configuration information indicates one or more RIS configurations of a plurality of RIS configurations for one or more RISs of the vehicle. Other aspects and features are also claimed and described.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may initiate a radio resource control (RRC) layer signaling procedure between the UE and a target UE, include an upper layer signaling message in an RRC message based in part on the RRC layer signaling procedure, and transmit the RRC message including the upper layer signaling message to the target UE. Alternatively, upper layer signaling messages may be transmitted separately before or after the RRC layer signaling procedure.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may identify a duty cycle function corresponding to a duty cycle range. In some cases, the UE may determine the duty cycle function based on a congestion metric. The UE may identify a bandwidth allocation for the UE and may determine a duty cycle within the duty cycle range based on the duty cycle function and the bandwidth allocation. In some cases, the UE may identify one or more of the duty cycle function, the congestion metric, the duty cycle range, or the bandwidth allocation based on control signaling from a base station. The UE may transmit a packet within the bandwidth allocation in accordance with the duty cycle.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine whether sufficient resources are available to perform a transmission in a current slot. The UE may transmit the transmission in the current slot, transmit an early reservation signal for a future resource, or determine whether sufficient resources are available to perform the transmission in a subsequent slot based at least in part on a probability-based determination and based at least in part on whether sufficient resources are available to perform the transmission in the current slot. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. The described techniques provide for a first device to perform data validation with one or more other devices. For example, a device may generate data at components associated with the device. To validate at least a portion of the data, the device may establish a connection with other devices. In some examples, the device may determine a portion of the data to validate based on a capability of the other devices to generate data that corresponds to the portion of data. The device may exchange data with the other devices and determine a validity of data generated at the device in response.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may utilize priority levels associated with packets or transmissions to determine whether to transmit feedback for a received transmission. The UE may compare priority levels between a transmission subject to a feedback condition and a transmission scheduled to be received when the feedback is scheduled to be transmitted to determine whether to send the feedback. The UE may communicate with the transmitting device according to the comparison and the determining. The UE may determine signal conditions causing a NAK and determine to send the NAK based on the signal conditions.