Abstract:
In a luminous display element, a retro-reflector is provided on the back side of an organic EL layer which includes an emission layer whose state changes between an emission state and a non-emission state. The retro-reflector includes a corner cube array, and reflects incident light in the same direction as an incident direction. A unit structure of the corner cube array is a form of a triangular pyramid which is made up of rectangular equilateral triangles having three faces, and a light shielding process is performed on the periphery of a base angle of the rectangular equilateral triangle. Thus, it is possible to prevent an image from being reflected, so that it is possible to provide the luminous display element whose contrast ratio and the utilization efficiency of emission are high.
Abstract:
A polarized electroluminescence element used for a display is disclosed. The polarized electroluminescence element includes a substrate, an orientation-inducing layer situated on the substrate and in a first direction of orientation, and a light-emitting layer situated on the orientation-inducing layer and made of a mixture of an electroluminescent material and an oriented material for emitting polarized electroluminescence, wherein the electroluminescent material and the oriented material are in a second direction of orientation corresponding to the first direction of orientation.
Abstract:
An imager with a four color mosaic pattern of red, green, blue, and infrared pass filters, where color component signals for a pixel are interpolated by averaging over nearest neighbor pixels.
Abstract:
An optical transducer includes a base member, a light source carried on a face of the base member, a light detector carried on the face of the base member laterally spaced from the light source, an optical shield extending from the face of the base member between the light source and light detector, and a displaceable member overlying, and spaced from, the light source, light detector and optical shield, and effective to reflect light from the light source to the light detector. The optical shield includes a transparent plate extending from the face of the base member between the light source and light detector, and carrying a thin layer of a light-blocking material to shield the light detector from direct exposure to the light source. The light source, light detector, and optical shield are all embedded in a transparent plastic potting material. Also described is a method of making such optical transducers by producing an intermediate matrix of a plurality of such light sources, light detectors and optical shields and cutting the matrix into individual optical units.
Abstract:
The invention relates to an incandescent lamp whose lamp vessel (20) has an interference filter (30) with locally differing layer thickness for producing red light. The interference filter (30) has a second absorber layer and additional layers of low optical refraction and high optical refraction for reducing its transmission in the violet, blue and green spectral regions.
Abstract:
An apparatus for enhanced light transmission is provided. The apparatus comprises a metal film having a first surface and a second surface, at least one aperture being provided in the metal film and extending from the first surface to the second surface. The at least one aperture comprises an entrance portion disposed on the first surface of the metal film and an exit portion disposed in the second surface of the metal film, each portion having a cross-sectional area in the plane of the corresponding metal film surface, wherein the cross-sectional area of the entrance portion is not equal to the cross-sectional area of the exit portion. A periodic surface topography is provided on at least one of the first and second surfaces of the metal film, the periodic surface topography comprising a plurality of surface features, wherein the geometry of each aperture entrance portion substantially matches the geometry of the surface features.
Abstract:
Method and apparatus for determining the location at which radiation is incident on the sensor system which includes an EMI screening mesh by comparing the actual image detected, which includes the higher order diffraction effects, with a search or sample image applied sequentially at different locations and determing the location of the sample image which gives the closest match. The sample image corresponds to an expected pattern or image from a point source incident at a particular location on a particular window/sensor system, and may be generated from a real source of known location and properties incident on the system, or may be a generated image, such as a standard image such as a cross pattern or determined mathematically, for example using Fourier transforms. Preferably, once the location of the point of incidence of the radiation has been determined, image processing techniques are applied to remove the diffraction spots.
Abstract:
The invention is related to a reflector lamp comprising a parabolic primary reflecting section, a parabolic or spheric secondary reflecting section joined to the primary reflecting section, a parabolic or spheric tertiary reflecting section joined to the secondary reflecting section, and an incandescent or discharge light source. The secondary and tertiary reflecting sections have faceted surfaces which longitudinally extend along the surface thereof so that most (at least 50%) or substantially all the light reflected by the faceted surfaces avoids the light source and thus the light, which would be absorbed or scattered by the light source, is minimized or substantially eliminated.
Abstract:
A light source for backlighting a display comprises a light-emitting device such as an incandescent bulb or LED array disposed within a cavity having diffusely reflecting walls and an aperture. A diffuser and brightness enhancing film are situated at the opening of the aperture between the aperture and the display to be backlit. A color filter may also be employed to whiten the light emerging from the light source.
Abstract:
A glass substrate for a front filter of a display device having considerable strength and excellent display quality, and being lightweight is provided. A display device employing this display filter substrate is provided. The glass substrate has one or more of electromagnetic-wave shielding function, near infrared ray blocking function, and anti-reflection function. The glass substrate has a thickness of 1.8-3.2 mm, an average surface compressive stress of 20-70 MPa, and a warp ratio of the glass substrate of 1.0% or less. The surface compressive stress is applied by an air blast cooling process or a chemical reinforcing process. The filter substrate is disposed over a front surface of the display device.