Abstract:
A high voltage gas switch includes a gas-tight housing containing an ionizable gas at a preselected gas pressure. The gas switch includes a gas-tight housing containing an ionizable gas at a gas pressure selected based upon a Paschen curve for the ionizable gas, where the Paschen curve plots breakdown voltages of the ionizable gas as a function of gas pressure multiplied by grid-to-anode distance, and where values of gas pressure multiplied by grid-to-anode distance increase over at least a portion of the Paschen curve in conjunction with increasing breakdown voltages. The gas switch also includes an anode disposed within the gas-tight housing, a cathode disposed within the gas-tight housing, and a control grid positioned between the anode and the cathode, where the control grid is spaced apart from the anode by a grid-to-anode distance selected based upon a desired operating voltage.
Abstract:
A gas switch includes a gas-tight housing containing an ionizable gas, an anode disposed within the gas-tight housing, and a cathode disposed within the gas-tight housing, where the cathode includes a conduction surface. The gas switch also includes a control grid positioned between the anode and the cathode, where the control grid is arranged to receive a bias voltage to establish a conducting plasma between the anode and the cathode. In addition, the gas switch includes a plurality of magnets selectively arranged to generate a magnetic field proximate the conduction surface that reduces the kinetic energy of charged particles striking the conduction surface and raises the conduction current density at the cathode surface to technically useful levels.
Abstract:
A system for generating infrared light includes a sealed housing and a noble gas filling the housing. A window disposed in a wall of the housing is transparent to infrared radiation. Two electrodes, disposed in the housing, are aligned along a common longitudinal axis adapted to be approximately perpendicular to a local force of gravity. A gap is defined between the electrodes along the longitudinal axis. Obstruction(s), disposed in the housing adjacent to the gap between the electrodes, extend along the length of the gap. The obstruction(s) define a convection space between the electrodes. The convection space has a dimension, measured perpendicular to the longitudinal axis, in the range of 2 to 10 times the length of the gap. An electric current source is coupled to the electrodes.
Abstract:
A xenon lamp in which fluctuation of the arc can be suppressed and the time until formation of the flicker phenomenon delayed by having an anode with a flattened or rounded anode tip, a rounded or flattened back end; a portion with a diameter that gradually increases from the anode tip toward the back end of the anode; a portion with a decreasing diameter located behind the portion with the increasing diameter of an axial length which is greater than the length in the axial direction of the portion with an increasing diameter; and a portion with a maximum outside diameter formed in a transition area between the portion with the increasing diameter and the portion with a decreasing diameter, and that the transition area between the portion with the increasing diameter and the portion with the decreasing diameter is formed to be continuous.
Abstract:
A gas flat display tube is disclosed including a glass container having a discharge gas therein; a plurality of cathodes extending horizontally and arranged by a predetermined interval in the glass container, for emitting electrons; a plurality of anodes extending vertically and arranged by a predetermined interval on one side of the glass container, for absorbing the emitted electrons; a plurality of phosphors arranged in a matrix form on the plurality of anodes and becoming luminous by the electrons absorbed into the anodes; and a plurality of gates extending vertically and arranged by a predetermined interval on the phosphors, for controlling the emitted electrons to be absorbed into the anodes.
Abstract:
A gas flat display tube is disclosed including a glass container having a discharge gas therein; a plurality of cathodes extending horizontally and arranged by a predetermined interval in the glass container, for emitting electrons; a plurality of anodes extending vertically and arranged by a predetermined interval on one side of the glass container, for absorbing the emitted electrons; a plurality of phosphors arranged in a matrix form on the plurality of anodes and becoming luminous by the electrons absorbed into the anodes; and a plurality of gates extending vertically and arranged by a predetermined interval on the phosphors, for controlling the emitted electrons to be absorbed into the anodes.