摘要:
Active acoustic pyrometry-based gas flow temperature measurement, such as for monitoring of gas turbine combustors, including industrial gas turbine (IGT) combustors is incorporated into the combustion monitoring and control system by addition of an acoustic transmitter or acoustic transceiver that transmits a sound wave in a line-of-sight with a plurality of acoustic sensors, such as dynamic pressure sensors. For temperature measurement, in some embodiments sound transmission time-of-flight that is directed generally transverse the gas flow path is measured by the controller and correlated with gas flow temperature along the line-of-sight. In other embodiments line-of-sight correlated gas flow temperatures in up and down stream planar paths are interpolated. In an integrated thermoacoustic pressure-based sensor and monitoring/control system embodiment, the controller determines absolute active path temperatures with acoustic transmission and time-of-flight analysis techniques.
摘要:
The invention refers to a method for controlling part load operation of a gas turbine comprising a controller wherein a load set point of the controller is greater or equal a minimum load set point. The minimum load set point depends on a hot gas temperature that is calculated based on a hot gas temperature model.
摘要:
One embodiment includes a system including an actuation system of a gas turbine system including an actuator, a positioner including one or more sensors, a motor, and a controller communicably coupled to the positioner and the motor. The actuator is coupled to one or more inlet guide vanes (IGVs) or variable stator vanes (VSVs) and configured to move the IGVs or VSVs, the positioner is configured to position the actuator so that the actuator moves the IGVs or VSVs to a desired angle, the motor is configured to drive the actuator, and the controller is configured to establish one or more baselines for one or more types of data obtained by the sensors at initialization of the gas turbine system, derive a deviation from the baselines, and perform a preventative action if a deviation that meets or exceeds a threshold is derived.
摘要:
A method and system for determining creep capability of turbine components is provided. A plurality of turbine components are manufactured from a material having known creep characteristics. Each of the plurality of turbine components is subjected to at least one of tensile stress, centrifugal stress and thermal stress, until a measurable amount of creep is acquired. The turbine components so tested are compared against known creep characteristics for the material used in the components. Components exhibiting an amount of creep greater than a predefined amount of creep will be separated from the plurality of turbine components and not placed into service.
摘要:
Methods of moving a rotating device of a wind turbine during transportation or standstill are provided. The methods include securing at least one auxiliary device to a position and connecting the device to one or more shafts of the rotating device at transportation or standstill. The auxiliary device is able to store, generate and/or convert energy during transportation, transferring energy continuously from at least one auxiliary device to one or more shafts of the rotating device during transportation or standstill, and moving one or more shafts of the rotating device continuously or discontinuously from a position to another. Also provided is a nacelle for a wind turbine, an auxiliary device, a control system for controlling moving of a rotating device of a wind turbine nacelle during transportation of the nacelle and use thereof.
摘要:
A method and system for monitoring a gas turbine engine (20) to predict maintenance requirements. Particles suspended in a gas flow (24, 32) of the engine (20) are monitored and quantified to predict a particle accumulation rate. Monitoring may be done using particle flow sensors (61-63) in a diverted portion (33) of the working gas flow (24), such as in the cooling gas flow (32). Particle sampling (S1-S3) may be done to determine particle size and composition distributions. Particle mass flow rates may then be continuously monitored per engine operating condition, and compared to predetermined values such as a normal upper limit per engine operating condition. An integrated particle mass flow may be used in conjunction with an instantaneous mass flow rate to predict a maintenance requirement. Multiple locations (L1-L3) may be monitored to recognize a maintenance requirement by flow section or component.
摘要:
In a combined cycle electrical power generator plant, the shut-down process includes a cooldown control period which is minimized before shutting down the gas turbine by detecting first whether a non-steaming condition has been reached and whether the gas turbine has been reduced to minimum load.
摘要:
A self-contained temperature probe assembly for sensing the disc cavity temperature of a gas turbine engine is shown. The assembly includes a thermocouple probe comprising an upper tube and a lower tube housing the probe leads. The lower tube extends from the cylinder housing through the blade ring to guide the probe tip through a hollow vane to adjacent a rotor disc and includes a tapered portion for sealing engagement with a tapered aperture in the blade ring as biased by a coil spring. The upper tube extends outwardly from the turbine cylinder to the probe head. The adjacent ends of the two tubes are retained in a standard flange in predetermined spaced relation against outward withdrawal and the lead wires are coiled within the space to maintain a slack condition to prevent transmission of vibration of the lead wires into the probe head and also prevent the rather fragile wires from supporting any weight of the probe during shipping or installation of the probe to the turbine.
摘要:
This steam turbine blade is provided with: a blade body (61) extending in a radial direction and having an airfoil profile in a cross section perpendicular to the radial direction; and a heater (H) including a heating wire disposed so as to extend along a trailing edge (Er) of the airfoil profile in the blade body (61). This configuration makes it possible to further mitigate an efficiency drop due to moisture attached to the surface of the steam turbine blade (60).