Abstract:
An image reading apparatus is capable of being switched between an observation state in which an image on a recording medium is projected onto a screen and observed and a read state in which the image is projected onto a reading unit and read. The apparatus includes a projecting lens provided in a lower portion of the apparatus to project the image, a rockable first reflecting member provided in an upper portion of the apparatus to reflect the image light from the projecting lens and, a second reflecting member provided in opposition to the screen to guide the image light reflected by the first reflecting member to the screen. A third reflecting member is provided below the second reflecting member to guide the image light reflected by the first reflecting member to the reading unit. The observation state and the read state are switched by the rocking motion of the first reflecting member.
Abstract:
In an image reader a frame image of a microfilm is projected on a line sensor with a projection lens and read. The projection lens is movable in the main scanning direction by a driving motor. The line sensor is movable in the subscanning direction by a driving motor. The line sensor is moved in the subscanning direction to apply preliminary scanning and detect positional deviation in the main scanning direction of the projected image, and the projection lens is moved in the main scanning direction corresponding to quantity of the positional deviation. When the frame image is inclined, it is rotated relatively to the main scanning direction by a prism to correct the inclination, and the projection lens is moved in the main scanning direction thereafter to correct positional deviation in the same direction.
Abstract:
A microfilm display device is responsive to a film address signal and controlled by a microprocessor to locate a desired film and select a film image for display on a cathode-ray terminal. The film image is converted to a video signal for display on the terminal. The video signal is used for fine positioning of the raster on a flying spot scanner which illuminates the film.
Abstract:
Systems and methods use a digital microform imaging apparatus for sensing an image mark on the microform containing the image of a document. The use of an area sensor with an adjustable region of interest can be used to improve the detection speed of image marks as a roll of microform is being transported.
Abstract:
The invention is directed to a digital microform reader that has a form carrier. A light projection system projects light onto the form carrier. A digital imaging system images a portion of the form carrier. A computer communication data interface system receives an electronic image from the digital imaging system, wherein the digital microform reader does not contain a viewer. A light diffusion sheet may be used with a condenser lens of the light projection system. The digital imaging system includes a CMOS (Complementary Metal Oxide Semiconductor) detector. CMOS detectors are able to capture an image much faster than CCD (Charge Coupled Device) detectors. Because the system does not have a separate viewer it is much less expensive than prior art systems. The system also uses less energy than prior art machines because of its use of light diffusion sheets with the condenser lens and as a background for the microform.
Abstract:
A microform imaging apparatus comprising a chassis including a microform media support structure configured to support a microform media within a plane substantially orthogonal to a first optical axis, a fold mirror supported along the first optical axis to reflect light along a second optical axis that is angled with respect to the first optical axis, a lens supported along one of the first and second optical axis, an area sensor supported along the second optical axis, a first adjuster for moving the area sensor along at least a portion of the second optical axis and a second adjuster for moving the lens along at least a portion of the one of the first and second optical axis.
Abstract:
A microform imaging apparatus comprising a chassis including a microform media support structure configured to support a microform media within a plane substantially orthogonal to a first optical axis, a fold mirror supported along the first optical axis to reflect light along a second optical axis that is angled with respect to the first optical axis, a lens supported along one of the first and second optical axis, an area sensor supported along the second optical axis, a first adjuster for moving the area sensor along at least a portion of the second optical axis and a second adjuster for moving the lens along at least a portion of the one of the first and second optical axis.
Abstract:
A digital microform imaging apparatus which includes an approximately monochromatic illumination source transmitting an incident light through a diffuse window along a first optical axis of the apparatus. A microform media support is configured to support a microform media after the diffuse window and along the first optical axis. An approximately 45 degree fold mirror reflects the incident light transmitted through the microform media approximately 90 degrees along a second optical axis. An imaging subsystem includes a lens connected to a first carriage which is linearly adjustable approximately parallel with the second optical axis, and an area sensor connected to a second carriage which is linearly adjustable approximately parallel with the second optical axis.
Abstract:
In connection with a method for automatically inserting documents to be displayed on a display device and/or copied in a digitizing device, such as microfiches, microfilm jackets or the like, in which process one document at a time is transported from a stack of documents to be processed to a document support and from there to a deposit magazine for the processed documents, provision is made according to the invention that the top document of a stack of documents contained in the holding magazine is pulled up by suction to about the level of the document support and the remaining stack is subsequently retained by suction acting in the opposite direction; the document pulled up by suction is transported sideways to the document support, and deposited on said support by terminating the suction effect, and the document is then picked up by suction again after it has been processed, and is transported to the deposit magazine.
Abstract:
A system and a method for the conversion of archived documents to a digital format and storage of the data extracted in repositories which may be easily extracted and searched by a user over a network such as the Internet. The data is preferably stored in the form of microfilm, although optionally the present invention could be operative with other types of physical media, such as microfiche, paper and any type of printed material. The microfilm data is preferably divided and/or grouped into at least one file. Optionally and preferably, each file undergoes the following automatic processing stages: combining files; analyzing image layout; segmentation; OCR; optional segmentation improvement; and output to XML, or another suitable output data format and/or language. In the last stage, the data contained in the files is preferably extracted and then more preferably transmitted to the relevant repository unit.