Abstract:
A document reading apparatus includes a sensor configured to receive light from a document, an imaging lens configured to form an image of light from the document on the sensor, a first holding member to which the imaging lens is fixed, and a second holding member to which the sensor is fixed, wherein the first holding member and the second holding member are fixed using an adhesive and solder.
Abstract:
A document reading apparatus includes a sensor configured to receive light from a document, an imaging lens configured to form an image of light from the document on the sensor, a first holding member to which the imaging lens is fixed, and a second holding member to which the sensor is fixed, wherein the first holding member and the second holding member are fixed using an adhesive and solder.
Abstract:
An image reading apparatus includes a drive unit that is mounted on a carriage having an image reading sensor, which is moved with respect to an original, mounted thereon and moves the carriage. The drive unit includes: a motor; a gear train for transmitting rotation of the motor so as to move the carriage; an encoder sensor for reading a code wheel fixed to a rotary shaft of the motor; and a support member for holding the motor. The encoder sensor is urged against a part of the support member by a resilient member, to be thus fixed to the support member.
Abstract:
An image reading device has a light emitting unit. The light emitting unit has a light emitting portion, a light guiding member, a holding member and a case member. The light guiding member is disposed along a main scanning direction, and an end portion of the light guiding member faces the light emitting portion. The light guiding member has a light irradiating portion which emits light to an outside. The holding member holds the light emitting portion and the light guiding member. In addition, the holding member has a first holding portion that directly or indirectly positions and holds the light emitting portion, and a second holding portion that positions and holds one end or both ends of the light guiding member. The case member houses the holding member that is in a state of being positioned.
Abstract:
An optical system, used for scanning, forms an image using reflective optical surfaces. The system may be telecentric, and may form an image that is reduced in size as compared with the scanned original. Several image-forming optical channels may be combined to form a page-wide scanning array.
Abstract:
An image reading device has a light emitting unit. The light emitting unit has a light emitting portion, a light guiding member, a holding member and a case member. The light guiding member is disposed along a main scanning direction, and an end portion of the light guiding member faces the light emitting portion. The light guiding member has a light irradiating portion which emits light to an outside. The holding member holds the light emitting portion and the light guiding member. In addition, the holding member has a first holding portion that directly or indirectly positions and holds the light emitting portion, and a second holding portion that positions and holds one end or both ends of the light guiding member. The case member houses the holding member that is in a state of being positioned.
Abstract:
In a color marking assembly, a series of ROS units are aligned above a photoconductive surface. These units have inboard and outboard mounts connecting them to this assembly. The inboard mounts are attached to a first side of the ROS, and the outboard mounts are attached to a second side of the ROS unit. The inboard mount is an elongated bar extending beyond the height of the ROS unit. This elongated bar has hinged portions on both its top and bottom connections to the ROS unit. The outboard mount has a ball bearing or sphere configuration. This configuration and the inboard mount enable the ROS unit to be easily deskewed when required.
Abstract:
A lens array unit mounting structure mounts a lens array unit in a recess provided in a housing of an image reading device. The structure includes a right projection and a left projection provided on the lens array unit and includes a right groove and a left groove provided in the recess of the housing. The lens array unit is secured in the recess of the housing by engaging the right projection with the right groove and engaging the left projection with the left groove.
Abstract:
A technique is provided which can improve optical characteristics by suppressing the occurrence of an error in attachment of a rotary deflector that deflects a light flux from a light source and scans it in a main scanning direction. There are provided a rotary deflector that deflects the light flux from the light source and scans it in the main scanning direction, an imaging optical system that images the light flux scanned by the rotary deflector onto a specified scanning object, a support part that supports the rotary deflector rotatably, and a positioning part that comes in contact with the support part at plural contact positions and positions the support part, in which a shortest distance between the plural contact positions in an optical axis direction of the imaging optical system is longer than a shortest distance between the plural contact positions in the main scanning direction.
Abstract:
An optical system, used for scanning, forms an image using reflective optical surfaces. The system may be telecentric, and may form an image that is reduced in size as compared with the scanned original. Several image-forming optical channels may be combined to form a page-wide scanning array.