Abstract:
The present disclosure describes a method and system for linearizing an amplifier using transistor-level dynamic feedback. The method and system enables nonlinear amplifiers to exhibit linear performance using one or more of gain control elements and phase shifters in the feedback path. The disclosed method and system may also allow an amplifier to act as a pre-distorter or a frequency/gain programmable amplifier.
Abstract:
A wireless transmitter (100) comprises a signal generator (10) for generating a signal, an amplifier (50) for amplifying the signal, and a phase shifting circuit (20) coupled between the signal generator (10) and the amplifier (50) and arranged to shift the phase of the signal to cancel remodulation of the signal generator (10) by the amplified signal.
Abstract:
A wireless transmitter (100) comprises a signal generator (10) for generating a signal, an amplifier (50) for amplifying the signal, and a phase shifting circuit (20) coupled between the signal generator (10) and the amplifier (50) and arranged to shift the phase of the signal to cancel remodulation of the signal generator (10) by the amplified signal.
Abstract:
To cancel a reflected wave reflected from a connecting portion (22) and leaking into a feedback signal when a non-matched component is connected, the reflected wave is extracted by a circulator (30) and its phase and amplitude are adjusted by a vector adjusting circuit (32), and then the thus adjusted reflected wave is vector-summed with the feedback signal in a vector sum circuit (34).
Abstract:
To cancel a reflected wave reflected from a connecting portion (22) and leaking into a feedback signal when a non-matched component is connected, the reflected wave is extracted by a circulator (30) and its phase and amplitude are adjusted by a vector adjusting circuit (32), and then the thus adjusted reflected wave is vector-summed with the feedback signal in a vector sum circuit (34).
Abstract:
A distortion compensating apparatus calculates a distortion compensation coefficient in such a manner that a difference signal between a reference signal, which is a transmit signal, and a feedback signal will be diminished, updates an old distortion compensation coefficient by the calculated distortion compensation coefficient and applies distortion compensation to the transmit signal based upon this distortion compensation coefficient. In this apparatus, a phase correcting interval, which is for correcting the phase difference between the reference signal and the feedback signal, and a distortion compensation coefficient updating interval are generated alternately, a correction is applied so as to null the phase difference in the phase correcting interval, and the distortion compensation coefficient is updated in the distortion compensation coefficient updating interval.
Abstract:
A LINC amplifier of a radio frequency transmitter provides substantially linear amplification from two nonlinear amplifiers by decomposing the original signal into two constant amplitude envelope, phase varying signals, which, when combined, constructively and destructively interfere to re-form the original signal. The output of the LINC amplifier, which is to be transmitted via an antenna, is an amplified form of the original signal. The LINC amplifier uses a digital control mechanism to control and adapt a digital compensation network that directly compensates for the imperfections of the analog RF environment, including the amplifiers. The mechanism monitors the combined amplifier output and adjusts the signal components in order to precisely compensate for any differences in the characteristics of the separate signal paths which would cause the combination not to accurately represent the original signal. The mechanism also corrects the component signals using information which can be applied to the amplifiers independent of the signal to be transmitted.
Abstract:
The present invention relates to a method of compensating for the phase distortion that occurs in a power amplified output signal in response to the output power of a power amplifier. The invention also relates to a phase distortion compensating device. The device includes a phase-locking and upconversion loop (30-39) which is connected to the input of a power amplifier (40). Briefly, the solution involves feeding a part of the signal (e.sub.pha) to be amplified back to a circuit (35) which combines this first-mentioned signal with a part of the amplified signal (e.sub.out) fed back from the output of the power amplifier (40), so as to achieve a smooth transition in the dominance of one signal over the other signal when the two signals are combined to obtain a new feedback signal (e.sub.fdb) from the combining circuit (35).
Abstract:
An apparatus for compensating the phase rotation in the feedback loop of a cartesian feedback power amplifier in a final transmitter stage for quadrature modulation of the complex difference signal between a complex input signal and the corresponding complex feedback signal with a complex modulation signal for forming a modulated real valued first signal and for quadrature modulation of the output signal from the power amplifier with a complex demodulation signal for forming the complex feedback signal. The phase shift between the first signal and the second signal and between the quadrature component of the first signal and the second signal is detected for determining the phase rotation of the feedback loop. Furthermore, the phase rotation of the complex modulation signal can be changed with a compensating phase rotation defined by the determined phase rotation.
Abstract:
The voltage variation between the electrodes of the tube of a microwave amplifier (1) causing a phase Shift of the output wave from the microwave amplifier (1), the process according to the invention consists of creating a phase shift of the wave entering the tube of the microwave amplifier (1) that is substantially proportional to the voltage variation and in the direction opposite the phase shift of the output wave caused by this voltage variation.