Abstract:
A method for fabricating a composite film structure, the method includes determining a desired morphology for a metallic layer of the composite film structure, selecting a first metal substrate based on the determining, transferring a graphene layer onto the first metal substrate, depositing the metallic layer on the graphene layer to achieve the desired morphology, and removing the first metal substrate from the graphene and the deposited metallic layer to form the composite film structure. A surface energy difference between the first metal substrate and the deposited metallic layer results in the desired morphology of the metallic layer.
Abstract:
A sensor arrangement for determining at least one physical parameter of a sensor unit which is activated by at least one periodic excitation, comprising a detection region in which changes of the parameter in the surroundings of the sensor unit lead to an output signal from the sensor unit. The sensor unit is wired such that if there is no change of the parameter in the detection region the output signal is a zero signal at the output of the sensor unit, whereas if there are changes of the parameter in the detection region the output signal is a signal that is not zero and which has a specific amplitude and phase. By means of a closed-loop control, the non-zero signal in the receive path is adjusted to achieve an adjusted state at zero even in the presence of changes of the parameter in the detection region. Inherent in the control signal used for this adjustment is a deviation (Δx, Δy) of the control signal from the adjusted state, which deviation represents information about the parameter. To create a sensor arrangement and a method in which values of a physical parameter in a detection region can be clearly determined, in a four-quadrant representation of the deviation (Δx, Δy) in the form of a vector analysis in a phase space of the control signal, the angle of an imaginary vector (2.6) relative to the x axis of an x, y coordinate system, said vector leading from the origin (2.7) of the x, y coordinate system to a measuring point (2.5) and said origin corresponding to the adjusted state, represents a measurement for the change of the parameter along a direction, and/or the magnitude of the imaginary vector (2.6) represents a measurement for the change of the parameter along a further direction.
Abstract:
The invention relates to a measuring circuit comprising a control block for controlling said circuit, a time base for providing a clock signal (fclk) in order to time said circuit, a sensor block which is designed to provide an output signal, said measuring circuit comprising in addition a first counting block which is timed to the clock frequency and a second counting block which is timed by the frequency of the output signal of the sensor block.
Abstract:
A control circuit for use with a four terminal sensor, such as a glucose sensor. The Glucose sensor is a volume product and typically its manufacture will want to make it as inexpensively as possible. This may give rise to variable impedances surrounding the active cell of the sensor. Typically the sensor has first and second drive terminals and first and second measurement terminals, so as to help overcome the impedance problem. The control circuit is arranged to drive at least one of the first and second drive terminals with an excitation signal, and control the excitation signal such that a voltage difference between the first and second measurement terminals is within a target range of voltages. To allow the control circuit to work with a variety of measurement cell types the control circuit further comprises voltage level shifters for adjusting a voltage at one or both of the drive terminals, or for adjusting a voltage received from one or both of the measurement terminals.
Abstract:
A device for counting animal traffic in an aquatic animal passage system includes chutes positioned across the aquatic animal passage system and a sensor positioned to sense an animal moving through or in the aquatic animal passage system. The chutes and the aquatic animal passage system are formed with precast concrete segments and may include a protective liner or coating coupled to their outer surface to protect animals from contacting the outer surface of the precast concrete segments. The sensors may be integrated with the precast concrete segments forming the chutes. Smart concrete segments may be employed as transducers to create an electric field in the chutes, with impedance sensors coupled to the transducers being responsive to changes to the electric field in the chutes caused by passing animals.
Abstract:
A system includes a retractable mounting assembly including a frame assembly. The frame assembly includes at least one substantially rigid frame member. In some embodiments, the frame assembly is configured to facilitate movement of an agricultural soil analyzer from a first position longitudinally proximate to a rear end of an agricultural implement to a second position longitudinally rearward of the first position, relative to a direction of travel of the agricultural implement, the frame assembly is configured to position the agricultural soil analyzer above a surface of an agricultural field while in the second position, and each of the at least one substantially rigid frame member is formed from a non-electrically interactive material.
Abstract:
A semiconductor gas sensor device includes a substrate, a conductive layer supported by the substrate, a non-suitable seed layer, and a porous gas sensing layer portion. The non-suitable seed layer is formed from a first material and includes a first support portion supported by the conductive layer, a second support portion supported by the conductive layer, and a suspended seed portion extending from the first support portion to the second support portion and suspended above the conductive layer. The porous gas sensing layer portion is formed from a second material and is supported directly by the non-suitable seed layer in electrical communication with the conductive layer. The first material and the second material form a non-suitable pair of materials.
Abstract:
A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.
Abstract:
The present disclosure provides a method and an apparatus for measuring electrical conductivity of liquids. In one aspect, the apparatus includes a waveform generator module configured to generate a first waveform signal and to supply the first waveform signal to a sensor; a phase adjustment module configured to receive the first waveform signal from the waveform generator module and to generate a phase-shifted signal from the first waveform signal, said phase-shifted signal having a phase that is adjusted based upon expected or measured properties of the liquid and further adjusted to eliminate phase error induced inaccuracies in the measurement; and a signal combination module configured to receive a return signal from the sensor and the phase-shifted signal from the phase adjustment module and to sum the return signal and the phase-shifted signal to produce an adjusted return signal containing information associated with the electrical property of the liquid.
Abstract:
Systems and methods for monitoring laboratory animals includes a tag comprising an inductive element and a capacitive element attached to a portion of a laboratory animal. The position of the portion is detected by monitoring the effect of the tag on a time-varying magnetic field having different frequencies, one near tag resonance, and one away from tag resonance.