Abstract:
Disclosed herein is a method of fabricating nano-components using nanoplates, including the steps of: printing a grid on a substrate using photolithography and Electron Beam Lithography; spraying an aqueous solution dispersed with nanoplates onto the grid portion to position the nanoplates on the substrate; depositing a protective film of a predetermined thickness on the substrate and the nanoplates positioned on the substrate; ion-etching the nanoplates deposited with the protective film by using a Focused Ion Beam (FIB) or Electron Beam Lithography; and eliminating the protective film remaining on the substrate using a protective film remover after the ion-etching of the nanoplates, and a method of manufacturing nanomachines or nanostructures by transporting such nano-components using a nano probe and assembling with other nano-components. The present invention makes it possible to fabricate the high-quality nano-components in a more simple and easier manner at a lower cost, as compared to other conventional methods. Further, the present invention provides a method of implementing nanomachines through combination of such nano-components and biomolecules, etc.
Abstract:
In order that a worm 1 is rotated, a clearance (a region constituting a clearance portion between bearings and a worm gear) is formed (FIGS. 4(1) to (3)) in an upper surface of a base plate 3. A mold 12 for forming a lower half region of the worm therein is formed (FIG. 4(8)). A material 5 for the worm is deposited (FIG. 4(9)) to a height equal to that of a lower half region plus that of an upper half of the worm. An upper half of the worm is formed (FIGS. 4(10) to (12). Finally, the material 13 in the clearance between the base plate 3 and gear 1 is removed (FIG. 4(13)).
Abstract:
A substrate on which a plurality of thin films having a plurality of cross-sections corresponding to the cross-section of a micro-structure are formed is placed on a substrate holder. The substrate holder is elevated to bond a thin film formed on the substrate to the surface of a stage, and by lowering the substrate holder, the thin film is separated from the substrate and transferred to the stage side. The transfer process is repeated to laminate a plurality of thin films on the stage and to form the micro-structure. Accordingly, there are provided a micro-structure having high dimensional precision, especially high resolution in the lamination direction, which can be manufactured from a metal or an insulator such as ceramics and can be manufactured in the combined form of structural elements together, and a manufacturing method and an apparatus thereof.
Abstract:
A process is disclosed whereby a 5-50-nanometer-thick conformal tungsten coating can be formed over exposed semiconductor surfaces (e.g. silicon, germanium or silicon carbide) within a microelectromechanical (MEM) device for improved wear resistance and reliability. The tungsten coating is formed after cleaning the semiconductor surfaces to remove any organic material and oxide film from the surface. A final in situ cleaning step is performed by heating a substrate containing the MEM device to a temperature in the range of 200-600 ° C. in the presence of gaseous nitrogen trifluoride (NF3). The tungsten coating can then be formed by a chemical reaction between the semiconductor surfaces and tungsten hexafluoride (WF6) at an elevated temperature, preferably about 450° C. The tungsten deposition process is self-limiting and covers all exposed semiconductor surfaces including surfaces in close contact. The present invention can be applied to many different types of MEM devices including microrelays, micromirrors and microengines. Additionally, the tungsten wear-resistant coating of the present invention can be used to enhance the hardness, wear resistance, electrical conductivity, optical reflectivity and chemical inertness of one or more semiconductor surfaces within a MEM device.
Abstract:
A process for manufacturing a micromachine comprising a machine element supported on a substrate, comprising the steps of successively depositing on the substrate machine part layers and removable sacrificial layers made of an oxide ceramic material containing a rare earth, Ba, and Cu, and selectively removing the machine parts layer and the sacrificial layers so as to leave the machine element.
Abstract:
A diamond surface is selectively etched by forming a mask on a surface of diamond, and etching the diamond surface with a mixture of oxygen-containing gas and an inert gas, in which a concentration of oxygen in terms of O.sub.2 is from 0.01 to 20% based on the whole volume of the mixture.
Abstract:
The invention relates to a micromechanical timepiece part comprising a silicon-based substrate (1) having at least one surface, at least one part of said surface having pores (2) which open out at the external surface of the micromechanical timepiece part and comprise a tribological agent (5).The invention likewise relates to a method for producing a micromechanical timepiece part starting from a silicon-based substrate (1), said silicon-based substrate having at least one surface, at least one part of which is lubricated by a tribological agent (5), said method comprising, in order, the steps of: a) forming pores (2) on the surface of the part of said surface of said silicon-based substrate (1), b) depositing said tribological agent (5) in said pores (2).
Abstract:
The invention relates to a silicon-based component with at least one chamfer formed from a method combining at least one oblique side wall etching step with a “Bosch” etching of vertical side walls, thereby enabling aesthetic improvement and improvement in the mechanical strength of components formed by micromachining a silicon-based wafer.
Abstract:
The invention relates to a process for fabricating a monolayer or multilayer metal structure in LIGA technology, in which a photoresist layer is deposited on a flat metal substrate, a photoresist mold is created by irradiation or electron or ion bombardment, a metal or alloy is electroplated in this mold, the electroformed metal structure is detached from the substrate and the photoresist is separated from this metal structure, wherein the metal substrate is used as an agent involved in the forming of at least one surface of the metal structure other than that formed by the plane surface of the substrate.
Abstract:
The manufacturing process produces a part (10), from a micromachinable material, the part (10) forming a blank of the timepiece component and comprising at least one surface having an initial roughness. It comprises a step of mechanical strengthening treatment of the part in an etching fluid intended to decrease the roughness of said surface. For example, a substrate of said micromachinable material is provided; the substrate is at least partially covered with a protective coating containing at least one aperture; the substrate is etched through the aperture in the protective coating and an etched surface is thus obtained; the mechanical strengthening treatment is applied to said etched surface through the aperture in the protective coating; and then the protective coating is removed. The etching fluid may be a plasma or a liquid chemical etchant.