Abstract:
A method for treating packages includes ink jet printing designs on packages, arranging packages on a treatment position of a package transport path, and at least intermittently charging the packages, during printing thereon, with a gaseous sterilizing agent.
Abstract:
A machine for inflating and sealing an inflatable structure having a longitudinal edge generally comprises a drive, an inflation nozzle, a sealing device, and a sheet engagement device. The machine may define an engaging assembly and an opposing assembly. The drive may be rotationally coupled to the sheet engagement device such that when the drive rotates, the engagement device also rotates. The sheet engagement device may comprise one or more engagement rollers which may have a plurality of teeth thereon. A first plurality of rollers and a second plurality of rollers comprising the engagement rollers may intermesh between a drive roller and a backing roller on the longitudinal edge of the inflatable structure. Thereby, the sheets of the inflatable structure may be engaged together and the length of the longitudinal edge may contract to facilitate inflation. The resulting inflated inflatable structure may comprise an embossed longitudinal edge.
Abstract:
The present invention relates to a vacuum sealable container system comprising a container and a lid assembly having a movable valve insert. The valve insert includes a vacuum indicator for informing the user when a vacuum is present in the container. The valve insert is pneumatically movable within a chamber by way of a pump assembly to open and close a fluid communication between the container and the exterior of the container to remove fluid to form the vacuum. The vacuum indicator collapses into an opening formed in the lid assembly to inform the user of the vacuum as well as reinforce the seal formed by the valve insert.
Abstract:
A method for packing a mattress spring bed includes: A. overlaying at least two mattress spring beds onto each other to form a mattress spring bed stack, the top side and the bottom side of the mattress spring bed stack are a mattress frame or a rigid support frame; B. placing the mattress spring bed stack into a sealing bag, then vacuuming the sealing bag, resulting in the springs of the spring beds being compressed; C. binding the mattress spring bed stack by strap. The mattress spring bed stack has a small volume, thus reducing the occupied space, increasing the transportation efficiency, and effectively reducing manufacture cost. In addition, the top side and the bottom side of the spring bed stack are respectively a mattress frame or a rigid supporting frame.
Abstract:
A food saver machine is provided that includes a film delivery mechanism, a cutting mechanism, a conditioning assembly and a drive mechanism. The film delivery mechanism has a support cradle for a roll of bag material and a feed roller assembly for dispensing the bag material. The cutting mechanism is disposed adjacent the film delivery mechanism and has a first sealing bumper and a shuttle member with a cutting portion. The shuttle member is arranged to cut transversely across the bag material dispensed from the film delivery mechanism. The conditioning assembly is pivotably disposed below the film delivery mechanism and has a heater member for sealing a portion of the bag material. The drive mechanism is operatively connected to the conditioning assembly and configured to pivot upwards to contact the first sealing bumper of the cutting mechanism and to pivot downwards to contact a second sealing bumper.
Abstract:
A package for an article (1) comprises a pressurized outer bag (5) having gas-tight seals (7) at opposite ends, and an inner web for supporting the article within the outer bag. The web extends along the length of the outer bag and is secured to the outer bag only at the gas-tight seals (7). The web is maintained under sufficient tension by the pressure within the outer bag to suspend the article within the bag and to maintain a space between the article and the outer bag on all sides of the article.
Abstract:
A rigid holding container has a flexible cover sheet extending over the holding area for sealing the contents. The container has a wide, flat perimeter lip which provides a firm base for the seal between the cover sheet and the container. A breaching bubble is formed in the seal, under the cover and over the perimeter lip. The consumer breaches the bubble by pressing the bubble against the lip between the thumb and forefinger. The pressure compresses the air in the bubble causing the bubble to expand laterally. The expanding bubble breaches along the perimeter of the lip, producing a peel flap of flexible cover material. The consumer pulls the peel flap while holding the rigid container down, to remove the cover sheet.
Abstract:
An inactive gas introducing facility includes an introducing device disposed in a support portion supporting a container accommodating a substrate and configured for introducing inactive gas to the inside of the container through a gas feed opening of the container with discharging gas present inside the container to the outside through a gas discharge opening of the container and a controller for controlling operation of the introducing device. The introducing device is capable of varying the feed rate of the inactive gas. The controller is configured to control the operation of the introducing device such that in the feeding of the inactive gas to the container supported to the support portion, the feed rate is increased progressively to a target feed rate.
Abstract:
A food container (2) includes a rigid thermoformed plastics carton (4) which holds a dry food 6 and is closed by a removable film closure (8). The film (8) incorporates a hydride which is arranged to generate hydrogen on contact with moisture. Additionally, the film (8) is arranged to have relatively high water vapour permeability and relatively low hydrogen gas permeability. In use, water vapour from air surrounding the container (2) passes into the film (8) and reacts with the hydride to generate hydrogen. Due to the relatively low hydrogen permeability of the film (8), the hydrogen is restricted from escaping from the container. Instead, the hydrogen then reacts with any oxygen within the container in a reaction catalysed by a catalyst associated with the carton (4), thereby to scavenge oxygen within the container (2) and protect the food (6) from oxidation.
Abstract:
The subject invention is directed to a pharmaceutical composition comprising an open matrix network carrying a pharmaceutically active ingredient, wherein the open matrix network comprises levan.