Abstract:
The present invention relates to an apparatus for cooling material to be printed and printing machine elements at sheet-fed rotary printing machines by means of cooled compressed air. It is an object of the present invention to provide an apparatus which requires little space, is able to cool effectively the material to be printed as well as the machine elements, which are undesirably heated by the dryers. Pursuant to the present invention, this objective is accomplished by providing an apparatus wherein cooled, compressed air is supplied over one or more sheet-guiding devices for guiding the sheets pneumatically along the sheet-guiding path, and a cooling device is disposed in the cross section of flow of the compressed air or the sheet-guiding device.
Abstract:
A device for cooling a material web in a web-fed rotary printing machine, includes a heating device for producing waste heat for evaporative cooling of a cooling medium, and a cooling configuration through which the cooling medium is directable for web cooling. A first quantity of the cooling medium is evaporated and a second quantity is cooled by removal of heat of evaporation. A vapor generator produces vapor at least partly by the waste heat from the heating device. At least one vapor-jet vacuum nozzle is operatable by the vapor for producing a negative pressure. The cooling medium is to be subjected to negative pressure in a negative-pressure chamber for at least partial evaporation and for cooling. A dryer including the cooling device, a printing machine including the cooling device or the dryer and a cooling method are also provided.
Abstract:
A printing machine structured in modular design, in particular a flexo printing machine, has a printing unit on a stand, on which printing unit a web in particular of a plastic foil or a metal foil is printed with color curing under UV radiation. A UV radiation and cooling unit is arranged on the stand and has a cooling cylinder and at least one UV radiator. The web surrounds the cooling cylinder at a great angle of contact.
Abstract:
A cooling device for cooling a web of material coming out of a drier, in particular a paper web of an offset printing machine coming out of a drier, which cooling device comprises a substantially closed housing with an inlet and an outlet slit for the web of material, said housing being provided at the outlet slit side with a feed aperture for feeding in outside air and at the inlet slit side with a discharge aperture for discharging air from the housing, the air being fed through the housing in counterflow to the direction of movement of the web of material, wherein the housing in the direction of movement of the web of material is provided with two or more cooling units placed in series which bring the infed air successively into contact with the web of material.
Abstract:
A drier intended for drying printing ink applied to a material by a printing machine, incorporating a conveyor device consisting of a support for the material as it passes through the drier and at least two organs which emit ultra-violet radiation, UV radiation, for the purpose of drying and/or hardening the printing ink. These two organs which emit UV radiation are located at such a distance from each other that a material which has passed beneath the first organ, where it has been exposed on the one hand to UV radiation for the purpose of hardening the printing ink and on the other hand to the heat emitted by the organ which emits UV radiation, will be able to pass through a section which will cause the temperature of the material to fall before the material passes beneath the second organ.
Abstract:
In some examples, a sheet-fed printing press includes a dryer for drying sheets printed by a non-impact printing device. A cooling unit is directly downstream from the dryer in the transport direction, and includes a cooling module above a conveying plane. The cooling module uses air as a cooling medium, and may include a blower module with blower nozzles that blow the cooling medium onto the surface of the sheets being cooled. The blower module forms, with a guide surface, a gap with respect to the surface of the sheet being cooled. The guide surface of the blower module is arranged at a height above the surface of the sheet being cooled so that the cross-section of an outer annular gap, through the cooling medium exits, is smaller than or almost equal to a sum cross-section across all opening surfaces of the blower nozzles in the guide surface.
Abstract:
A machine for digital printing on tape, which comprises a frame that supports elements of entraining at least one tape along an advancement path and is provided with at least one printing assembly, which comprises at least one ink-jet printing head; downstream of the printing assembly, along the advancement direction of the tape, there is at least one assembly for drying the inks applied to the tape; the drying assembly comprises a temperature-adjustable drum for supporting and entraining the tape, adhesion elements adapted to allow the retention in adhesion of the tape on the outer lateral surface of the drum, and hot air emitter elements which face at least one portion of the outer lateral surface of the drum.
Abstract:
A method for manufacturing laminated printed tapes, comprising the steps of: causing the advancement of a primary tape, making it adhere, with at least one segment thereof, to the lateral surface of an entrainment drum; performing at least one printing operation with application of at least one layer of ink on at least one portion of the segment of the primary tape in adhesion with the lateral surface of the entrainment drum; and subsequently laminating, on the segment of the primary tape in adhesion with the lateral surface of the entrainment drum, a secondary tape by way of the interposition of adhesive material, so as to obtain a laminated printed tape.
Abstract:
A web-fed press includes at least two printing units and at least one drier for drying at least one printing-material web which is moved through the at least two printing units and printed on at least one side with at least one offset printing ink at each of the printing units. The printing-material web is dried at least after the first printing unit and before the second printing unit.
Abstract:
A method of cooling a material web includes, after drying a material web, moving the material web in a given direction on a meander-shaped web path over a cooling cylinder and at least one other cylinder disposed at a location selected from a group thereof consisting of a location upline and a location downline from the cooling cylinder, as viewed in the given direction of the web path, providing for the moving of the material web to be with at least partial looping thereof over the cooling cylinder and the other cylinder, and arranging the cylinders with respect to one another so as to exclude contact pressure with one another that is in effect between two respective ones of the cylinders; a device for performing the method.