摘要:
Disclosed is an electrocatalyst for fuel cells, in which a porous carbon material including pores having a diameter smaller than a kinetic diameter of carbon monoxide is used as a support body and contact probability between an activated metal and carbon monoxide is decreased, thereby preventing fuel cell performance from being degraded by carbon monoxide. The electrocatalyst is obtained by adsorbing 10-80 parts by weight of an activated metal to 20-90 parts by weight of a porous support body, characterized in that the porous support body has a total surface area of 200-2,500 m2/g including an outer surface thereof and an inner surface of pores thereof, and has a plurality of pores penetrating into an interior of the support body with an average diameter of 2-15 nm and a total volume of 0.4-2.0 m3/g, and the activated metal is alloyed with 20-95 at % of platinum and 5-80 at % of one metal selected from among Ru, Sn, Os, Rh, Ir, Pd, V, Cr, Co, Ni, Fe and Mn. As for such an electrocatalyst, carbon monoxide does not fundamentally come in contact with the activated metal adsorbed to the inner surface of the pores of the support body, thereby minimizing degradation of fuel cell performance, thus overcoming fuel-feeding problems.
摘要:
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
摘要:
Nitrous oxide-containing gas is subjected to heat exchange with decomposed gas from a nitrous oxide decomposition catalyst-filled reactor and then contacted with a heater comprising integrally formed heating unit and baffles, wherein gaps are formed between the baffle-integrated heater and the unit body in order to alleviate the pressure difference in the gas flow channel, and subsequently introduced into a nitrous oxide catalyst-filled catalyst layer for decomposition of the nitrous oxide into nitrogen and oxygen. The nitrous oxide-containing gas is neutralized by continuous treatment.
摘要:
A catalyst manufacturing process includes heat treating an intermediate catalyst composition that includes catalyst nanoparticles having catalyst atoms in a non-zero oxidation state bonded to a dispersing/anchoring agent. The catalyst nanoparticles are formed using a dispersing agent having at least one functional group selected from the group of a hydroxyl, a carboxyl, a carbonyl, an amide, an amine, a thiol, a sulfonic acid, sulfonyl halide, an acyl halide, an organometallic complex, and combinations of these. The dispersing agent can be used to form single- or multicomponent supported nanocatalysts. The dispersing agent also acts as an anchoring agent to firmly bond the nanocatalyst to a support. Performing the heat treating process in an inert or oxidative environment to maintain the catalyst atoms in a non-zero oxidation helps maintains a stronger bonding interaction between the dispersing agent and the catalyst atoms. This, in turn, increases the dispersion and/or distribution of catalyst components throughout the supported catalyst.
摘要:
The invention relates to a process for the purification of titania by treating the titania with an aqueous solution comprising one or more ammonium compounds at elevated temperatures, separating the titania from the aqueous solution, drying the titania and, optionally, calcination of the dried titania. More especially the invention relates to the removal of sulphur (mainly present in the form of sulphate compounds) from the titania. The titania purified according to the above process is especially suitable for the use as catalyst carrier.
摘要:
A process and catalyst are disclosed for reducing coking in hydrocarbon processing reactions. The preferred embodiments employ a sulfur-containing material such as hydrogen sulfide to reduce catalyst susceptibility to deactivation from carbon deposits formed during processing.
摘要:
The present invention relates to stabilized supports stable at temperatures above 800null C., and method of preparing such supports, which includes adding a rare earth metal to an aluminum-containing precursor prior to calcining. The present invention can be more specifically seen as a support, process and catalyst wherein the stabilized alumina catalyst support comprises a rare earth aluminate with a molar ratio of aluminum to rare earth metal greater than 5:1 and, optionally, an aluminum oxide. More particularly, the invention relates to the use of catalysts comprising rhodium, ruthenium, iridium, or combinations thereof, loaded onto said stabilized supports for the synthesis gas production via partial oxidation of light hydrocarbons, and further relates to gas-to-liquids conversion processes.
摘要:
One aspect of the invention relates to a catalyst composite containing an extruded catalyst support containing an extruded activated carbonaceous material having specifically a defined pore structure. For example, the extruded activated carbonaceous material may have pores wherein at least about 40% of total Hg porosity occurs in pores having a diameter of about 200 Å and larger. Alternatively the extruded activated carbonaceous material may have a first set of pores having a pore diameter of at least about 40 Å and at most about 100 Å with a porosity of at least about 0.15 cc/g, and a second set of pores having a pore diameter of at least about 5,000 Å and at most about 20,000 Å with a porosity of at least about 0.3 cc/g.
摘要:
A process and catalyst for the partial oxidation of paraffinic hydrocarbons, such as ethane, propane, naphtha, and natural gas condensates, to olefins, such as ethylene and propylene. The process involves contacting a paraffinic hydrocarbon with oxygen in the presence of hydrogen and a catalyst under autothermal process conditions. Preheating the feed decreases oxygen consumption and increases the net hydrogen balance. The catalyst comprises a Group 8B metal, preferably, a platinum group metal, and at least one promoter selected from Groups 1B, 6B, 3A, 4A, and 5A, optionally supported on a catalytic support, such as magnesia or alumina. In preferred embodiments, the support is pretreated with a support modifier selected from Groups 1A, 2A, 3B, 4B, 5B, 6B, 1B, 3A, 4A, 5A, the rare earth lanthanides, and the actinides. A modified fluidized bed reactor is disclosed for the process.