Abstract:
An electrode catheter for mapping right sided supra-ventricular accessory electrical pathways comprises an elongated tubular catheter body and a tip portion which comprises a compound curve. The compound curve has a first bend and a second bend which forms a generally circular curve. The plane of the generally circular curve lies transverse to and preferably at an angle of about 30.degree. to the axis of the catheter body. The generally circular curve portion of the tip portion carries a plurality of electrodes. A puller wire extends through the catheter body and into the tip portion, the distal end of the puller wire being fixedly attached to the distal end of the tip portion. A handle is provided at the proximal end of the catheter for controlling longitudinal movement of the puller wire relative to the catheter body. Proximal movement of the puller wire relative to the catheter body results in the angle of the first bend becoming more acute and a decrease in the diameter of the generally circular curve of the tip portion.
Abstract:
An intravascular catheter comprises an elongated catheter body having a flexible plastic inner wall, a braided reinforcing mesh surrounding the inner wall and a flexible plastic outer wall surrounding the reinforcing mesh. The braided reinforcing mesh comprises helical members having a high modulus of elasticity and longitudinal warp members having a lower modulus of elasticity.
Abstract:
An autoinflatable catheter is disclosed which comprises an elongated first catheter tube section forming a main catheter body, a short second catheter tube section forming a catheter tip, a balloon support extending between the posterior end of the catheter tip and the anterior end of the main catheter body and an inflatable balloon surrounding the balloon support. The balloon support comprises a rigid cage having a continuous hollow interior and openings for the flow of liquid through the cage to inflate the balloon. The openings are sufficiently large to not significantly restrict the flow of liquid through the openings and to prevent pooling of liquid in the chamber between the cage and the balloon.
Abstract:
A steerable irrigated tip catheter is provided. The catheter includes a catheter body, a control handle at the proximal end of the catheter body, and a tip section at the distal end of the catheter body. The tip section comprises a segment of flexible tubing with a tip electrode fixedly attached to its distal end. The tip electrode has a fluid passage in fluid communication with a lumen in the tip section. The fluid passage comprises at least one transverse passage or is formed by interconnecting pores of the tip electrode. An infusion tube extends through the catheter body and tip section and is anchored at its distal end in the proximal end of the fluid passage in the tip electrode. In use, fluid can flow through the infusion tube, into the fluid passage in the tip electrode and through the tip electrode to the outer surface of the tip electrode.
Abstract:
A multi-directional electrode catheter comprising an elongated tubular catheter body, a catheter tip section at the distal end of the catheter body and a control handle at the proximal end of the catheter. The catheter body may have a central lumen, and four off-axis lumens symmetrically positioned about the central lumen. A puller wire extends from the central handle through each off-axis lumen and is anchored to the tip section at a selected location. Within each off-axis lumen in the catheter body, there is provided a compression coil in surrounding relation to the puller wire. The compression coil is fixedly attached to the catheter body at its distal and proximal ends. At its proximal end, each puller wire is attached to a movable piston in the control handle. Moreover, each piston is controlled by an operator using a slidable button fixedly attached to each piston. Movement of a selected button results in movement of a selected puller wire and deflection of the tip section in the direction that puller wire.
Abstract:
A bi-directional electrode catheter comprising an elongated tubular catheter body, a catheter tip section at the distal end of the catheter body and a control handle at the proximal end of the catheter. The tip section comprises two pair of generally diametrically opposed off-axis lumens. Two pair of puller wires extend from the handle, through the catheter body, and into the off-axis pair of lumens of the tip section, where they are anchored in the tip section at different locations along the length of the tip section. Compression coils extend through the catheter body in surrounding relation to the puller wires. At their proximal ends, the puller wires are attached to movable pistons in the control handle. Each piston is controlled by an operator using a slidable button fixedly attached to each piston. Movement of selected buttons results in deflection of the tip section into a generally planar “U”- or “S”-shaped curve.
Abstract:
An electrode catheter for cardiac electrophysiology is provided. An elongated body suitable for intravascular insertion and forming an axial lumen is provided. A tip electrode defines an axial hole extending inward from a distal end of the tip electrode and is directly mounted to a distal end of the elongated body on a proximal end of the tip electrode. An eye electrode is located within the axial hole substantially concentric to and electrically insulated from the tip electrode. Electrode lead wires run through the axial lumen. One of the electrode lead wires is electrically connected to the eye electrode and another of the electrode lead wires is electrically connected to the tip electrode.
Abstract:
A multi-directional electrode catheter comprising an elongated tubular catheter body, a catheter tip section at the distal end of the catheter body and a control handle at the proximal end of the catheter. The catheter body may have a central lumen, and four off-axis lumens symmetrically positioned about the central lumen. A puller wire extends from the central handle through each off-axis lumen and is anchored to the tip section at a selected location. Within each off-axis lumen in the catheter body, there is provided a compression coil in surrounding relation to the puller wire. The compression coil is fixedly attached to the catheter body at its distal and proximal ends. At its proximal end, each puller wire is attached to a movable piston in the control handle. Moreover, each piston is controlled by an operator using a slidable button fixedly attached to each piston. Movement of a selected button results in movement of a selected puller wire and deflection of the tip section in the direction that puller wire.
Abstract:
A deflectable tip catheter includes an elongated catheter body, a tip section carrying electrodes at the distal end of the catheter body and a control handle at the proximal end of the catheter body. The catheter body has a central lumen and the tip section has a pair of off axis lumens in communication with the central lumen of the catheter body. A compression coil is disposed in the central lumen of the catheter body and is fixedly attached at its proximal and distal ends to the proximal and distal ends of the catheter body by means of glue joints. A tunnel, formed by a short piece of tubing, is provided through each glue joint. A puller wire extends from the control handle, through the compression coil and into one off axis lumen of the tip section and is attached at is distal end to the wall of the tip section. Electrode lead wires pass from the central handle through the tunnels and central lumen of the catheter body and into the other off axis lumen of the tip section and are electrically connected to separate electrodes.
Abstract:
An electrophysiological mapping device includes an outer catheter, an inner catheter slidable within the outer catheter, and an electronic activation and recording device for electrically activating electrodes on the inner catheter and/or recording electric signals received by the electrodes. The distal end of the inner catheter comprises a plurality of arms that carry electrodes. The arms bow outwardly upon extension of the inner catheter from the outer catheter to form a three-dimensional shape. Each arm has a spine of a superelastic material. Each spine is semicircular in section, and is disposed within a portion of a flexible sheath, the electrode lead wires being disposed in the rest of the sheath. The electrodes are formed from the ends of the insulated electrode lead wires which pass through the sheath, are wrapped around the sheath and then stripped of their insulation. The proximal and distal ends of the spines are fixed to proximal and distal fittings, each having a polygonal segment having flat sides which engage the flat surfaces of the spines and a clamping ring to secure the spines to the segments. A puller wire is attached to the distal end of the three-dimensional shape and passes through the inner catheter to the proximal end of the catheter where it is connected to a deflectable control handle which applies a proximally directed force to the puller wire causing the three-dimensional shape to expand outwardly. The puller wire is coated with TEFLON inside the inner catheter and with polyurethane outside the catheter allowing the inner catheter to translate smoothly inside the inner catheter and to be sealed at its distal end against the flow of blood. Multiple electrode configurations are provided to meet specific ablation and mapping requirements.