Abstract:
A primary border node (BN) and a standby BN are provided for internetworking two network domains, such that connectivity between the two network domains is maintained when a failure occurs in one of the network domains. The two network domains include an access network that implements MPLS-TP and a core network that implements IP, MPLS, or a combination of both. The primary BN establishes a tunnel from itself to the standby BN, and re-directs network data traffic from itself to the standby BN via the tunnel when it detects that an access node has switched connection from the primary VN to the standby BN. The primary BN also monitors its connections to the core network, and signals access nodes to switch to the standby BN if a failure is detected in these connections.
Abstract:
A first network element that is to be coupled with a second network element over a first network in the same domain is described. The first network element includes a connectivity check detection module and a connectivity check fault state change module. The connectivity check detection module detects, according to a first protocol, a connectivity status of a local maintenance endpoint on a second network changing between not active and active. The connectivity check fault state change module creates and sends a first fault state change message, according to a second protocol, in response to the connectivity status of the local maintenance endpoint changing from not active to active instead of forwarding connectivity check messages periodically received by the first network element to a remote maintenance endpoint coupled to the second network element over a third network.
Abstract:
Techniques for recovering from hierarchical virtual private LAN service (HVPLS) hub connectivity failure with a dynamic spoke pseudowire. According to one embodiment of the invention, a provider edge (PE) network element in the HVPLS hub monitors for a failure of HVPLS hub connectivity failure and reuses an HVPLS spoke connectivity failure recovery mechanism in an MTU by fabricating failure of one or more spoke facing connectivity elements coupling the MTU with the PE network element causing the MTU to transition to a secondary PE network element in the HVPLS hub. In addition, the PE network element establishes a dynamic spoke pseudowire for each virtual instance affected with the MTU to restore HVPLS hub connectivity for that PE network element.
Abstract:
According to one embodiment, in response to at least one of a link failure and node failure of a protected label switched path (LSP), network traffic is switched onto a protection path according to a fast re-reroute (FRR) scheme. A HELLO session is established with the remote node that is not immediately adjacent to the network element, including exchanging one or more HELLO messages with the remote node, each HELLO message having a time-to-live (TTL) value of greater than one if IP forwarding is used. The TTL value of the HELLO message is set to one if the HELLO message is sent via tunnel. In response to a request to restart, a resource reservation protocol (RSVP) traffic engineering (TE) graceful restart (GR) procedure is performed using information obtained from the one or more HELLO messages exchanged with the remote node during the HELLO session.
Abstract:
A method to optimize resource allocation in a network employing MPL S, the method including the steps of communicating with a second node to establish a first LSP that includes a first node and the second node using an extension of RSVP-TE in a first RSVP-TE session having a group identifier. A resource controllable by the network element is allocated to the first LSP and is associated with the group identifier. The steps including communicating with a third node in the network to establish a second LSP that includes the first node and the third node using the extension of RSVP-TE through a second RSVP-TE session that is different than the first session and has the same group identifier. The resource is shared between the first LSP and the second LSP, because the same group identifier is associated with the first RSVP-TE session and second RSVP-TE session.
Abstract:
Improving efficiency of encapsulation for packets of a first set of one or more protocols on a packet-pseudowire over a tunnel in a Packet Switched Network (PSN) is described. A first provider edge (PE) network element is coupled with a customer edge (CE) network element over an attachment circuit and is coupled with a second PE network element over the packet-pseudowire. The first provider edge network element receives a frame from the CE network element over the attachment circuit. Responsive to the first PE network element determining that the frame encapsulates a packet of the first set of protocols, the first PE network element encapsulates the packet into a protocol data unit for transmission over the packet-pseudowire without including substantially all of the plurality of fields of the data link layer header. The first PE network element transmits the protocol data unit over the packet-pseudowire over the PSN tunnel to the second PE network element. Efficiency is improved through a reduction of overhead on the packet-pseudowire by removing substantially all the fields of the data link layer header of the first frame.
Abstract:
A method and apparatus for reducing the number of CC messages transmitted in a provider network. In one embodiment of the invention, a first service provider network element receives CC messages from a first customer network at a first periodicity rate. The first service provider network element stores the received CC messages and reduces the first periodicity rate to create a second periodicity rate that is smaller than the first periodicity rate. The first service provider network element transmits CC messages to a second service provider network element through the provider network at the second periodicity rate. Other methods and apparatus are also described.
Abstract:
A method performed on a network element employing Multiprotocol Label Switching (MPLS) to promulgate an alert to each Label Switch Router (LSR) along a Label Switch Path (LSP) by forwarding a labeled packet serving as an alert packet generated by an LSR in the LSP, the method including receiving the labeled packet by the network element from another LSR in the LSP, determining whether the labeled packet is the alert packet by checking a time to live value in an MPLS label header of the labeled packet, determining whether the labeled packet is an operation, administration and maintenance (OAM) packet based on a presence of a generic associated channel label, copying the labeled packet including a label stack of the labeled packet and forwarding the labeled packet to a next LSR in the LSP, whereby the latency in promulgating the alert to each of the LSRs in the LSP is reduced.
Abstract:
A method and apparatus that operates two bridging protocols in a hybrid bridging node is described. The operation of the two bridging protocols in the hybrid node allows for an incremental transition of a provider bridging network from operating a legacy bridging protocol that shares MAC addresses to a bridging network that operates VPLS and/or PBB bridging protocols. The hybrid bridging node selectively broadcasts address resolution packets and unicast packets with unknown MAC addresses from the nodes operating VPLS and/or PBB to nodes operating a legacy bridging protocol.
Abstract:
Techniques for recovering from hierarchical virtual private LAN service (HVPLS) hub connectivity failure are described herein. In one embodiment of the invention, a provider edge network element reuses an HVPLS spoke connectivity failure recovery mechanism in an MTU to protect against a failure of HVPLS hub connectivity. The PE network element monitors hub facing connectivity elements and declares a hub connectivity failure upon a certain amount of those hub facing connectivity elements failing, and fabricates a failure of its spoke facing connectivity elements causing the MTU to detect an HVPLS spoke connectivity failure and switch to a secondary HVPLS spoke connection. Other methods and apparatuses are described.