Abstract:
A processing system includes a thermo viewer 51 which measures a temperature distribution over a top surface of a semiconductor wafer; a temperature measuring device 14 which measures, for each of divided areas of the semiconductor wafer, a temperature of a portion in the divided area; a median value calculating unit 202 which calculates, for each divided area, a median value of a temperature distribution of the divided area, based on the temperature distribution measured by the thermo viewer 51; an offset calculating unit 204 which calculates, for each divided area, a difference between the median value and the temperature of the portion as an offset; and a temperature control unit 205 which controls, for each divided area, the temperature of the divided area such that the median value becomes equal to a set temperature, based on the offset and the temperature measured by the temperature measuring device 14.
Abstract:
A substrate processing apparatus includes: a cylindrical shaped chamber configured to accommodate a substrate; a movable electrode capable of moving along a central axis of the cylindrical shaped chamber within the cylindrical shaped chamber; a facing electrode facing the movable electrode within the cylindrical shaped chamber; and an expansible/contractible partition wall connecting the movable electrode with an end wall on one side of the cylindrical shaped chamber. A high frequency power is applied to a first space between the movable electrode and the facing electrode, a processing gas is introduced thereto, and the movable electrode is not in contact with a sidewall of the cylindrical shaped chamber, a first dielectric member is provided at the cylindrical shaped chamber's sidewall facing the movable electrode, and an overlap area between the first dielectric member and a side surface of the movable electrode is changed according to movement of the movable electrode.
Abstract:
A distance between the surface of the base member and the electrostatic chuck having the heater pattern formed on a bottom surface thereof can be uniformized. A bonding method of bonding an electrostatic chuck and a base member to each other includes forming a filling member 30 by covering irregularities of a heater pattern 9a formed on a bottom surface 61 of the electrostatic chuck 9 facing the base member 10; grinding a base member contact surface 62 of the filling member 30 facing the base member 10; and bonding the ground base member contact surface 62 of the filling member 30 to the base member 10 with an adhesive layer 31 provided therebetween.