Abstract:
A directional backlight unit and an image display apparatus including the directional backlight unit are provided. The directional backlight unit includes at least one light source and a light guide plate that guides light emitted by the light source. An interval between grating patterns formed on the light guide plate satisfies at least one condition of a first range and a second range in order to minimize a spreading of light caused by the grating patterns.
Abstract:
There are provided a backlight unit, a 3D image display apparatus, and a method of manufacturing the same. The backlight unit may include a light source, a light guide plate that guides light irradiated from the light source, and including an exit surface through which the light exits, and a reflection plate provided on at least a part of the exit surface of the light guide plate.
Abstract:
A three-dimensional (3D) image display apparatus includes a directional backlight unit and a display panel. The 3D image display apparatus may include an absorptive wire grid polarizer in the directional backlight unit or the display panel, for minimizing a distance between a diffraction device of the directional backlight unit and a pixel of the display panel.
Abstract:
A double-sided glassless three-dimensional (3D) display apparatus including a backlight unit may include an light source unit configured to emit light to the front and the rear thereof by diffracting incident light, and first and second display devices configured to use the light emitted by the light source unit as light for a 3D image formation and to form the 3D image on both sides of the light source unit. The light source unit may include a light source portion configured to emit three lights that have three different respective wavelengths and a light guide panel configured to transmit the lights emitted by the light source portion to the first and second display devices.
Abstract:
Provided are a directional backlight unit and an image display apparatus including the same. The directional backlight unit includes at least one light source, a light guide plate arranged at a side of the at least one light source and configured to guide light emitted from the at least one light source by total reflection, a plurality of diffraction gratings arranged in a pattern at a surface of the light guide plate and configured to diffract the light and to emit the light diffracted by the plurality of diffraction gratings at a predetermined angle from a front surface; and a mirror arranged at a rear surface of the light guide plate and configured to reflect the light diffracted by the plurality of diffraction gratings toward the light guide plate, the rear surface of the light guide plate being opposite to the front surface of the light guide plate.
Abstract:
A directional backlight unit and a three-dimensional (3D) image display device including the directional backlight unit are provided. The directional backlight unit includes: a light guide plate, a light source configured to irradiate an incident surface of the light guide plate with a plurality of color lights, and a grating that includes a sub-grating configured to react to all of the plurality of color lights. The directional backlight unit may further include a color filter that corresponds to a plurality of color lights emitted from each sub-grating.
Abstract:
A liquid crystal display includes a light source unit, a first substrate provided on the light source unit, an electrode layer provided on the first substrate, a second substrate separate from the electrode layer, a polarizing plate provided on a surface of the second substrate, a liquid crystal layer disposed between the electrode layer and the second substrate, a reflecting unit provided on a surface of the first substrate; and a wire grid polarizer provided on an opposite surface of the first substrate.
Abstract:
A pattern structure includes a plurality of pattern structure units arranged substantially on a same plane, where each of the pattern structure units has a first surface and a second surface, which are opposite to each other, and a microstructure is defined on the first surface of each of the pattern structure units, and a flattening layer disposed on the second surface of each of the plurality of pattern structure units, where the flattening layer connects the pattern structure units with each other, and a vertical step difference exists between second surfaces of the pattern structure units.
Abstract:
A data management method of a data storage device having a data management unit different from a data management unit of a user device receives information regarding a storage area of a file to be deleted, from the user device, selects a storage area which matches with the data management unit of the data storage device, from among the storage area of the deleted file, and performs an erasing operation on the selected storage area which matches with the data management unit.
Abstract:
A light emitting device includes a metal reflective layer including a phase modulation surface on which oblong phase modulation elements are formed; a first electrode provided on the metal reflective layer; an organic emission layer that is provided on the first electrode and that emits light; and a second electrode provided on the organic emission layer, wherein the oblong phase modulation elements are arranged to form a geometric phase lens.