Abstract:
An organometallic compound represented by Formula 1: M(L1)n1(L2)n2(L3)n3 Formula 1 wherein in Formula 1, M, L1, L2, L3, n1, n2, and n3 are the same as defined in the specification.
Abstract:
An organic light-emitting device (OLED) includes a first electrode, a second electrode, an emission layer between the first electrode and the second electrode and including an electron-transporting host and a hole-transporting host, a hole transport region between the first electrode and the emission layer and including a hole transport layer, and an electron transport region between the emission layer and the second electrode and including an electron transport layer, wherein the OLED satisfies Equations 1 and 2 below: 0.75 eV≦|LUMOH(ET)−LUMOH(HT)|≦0.90 eV |E(S1,H(ET))−E(S1,H(HT))| wherein in Equations 1 and 2, LUMOH(ET) refers to a lowest unoccupied molecular orbital (LUMO) energy level of the electron-transporting host, LUMOH(HT) refers to an LUMO energy level of the hole-transporting host, E(S1, H(ET)) refers to a singlet energy level of the electron-transporting host, and E(S1, H(HT)) refers to a singlet energy level of the hole-transporting host.
Abstract:
Disclosed are a compound represented by Chemical Formula 1, and a film, an infrared sensor, and an electronic device including the compound. In Chemical Formula 1, Q1, Q2, X1, X2, R1, R2, and A1 are the same as in the specification.
Abstract:
An organometallic compound represented by Formula 1: M(L1)n1(L2)n2 Formula 1 In Formula 1, M is a transition metal; L1 is a ligand represented by Formula 2 as disclosed herein; L2 is a monodentate ligand, a bidentate ligand, a tridentate ligand, or a tetradentate ligand; n1 is 1, 2, or 3, wherein, when n1 is 2 or greater, ligands L1 are identical to or different from each other; and n2 is 0, 1, 2, 3, or 4, wherein, when n2 is 2 or greater, ligands L2 are identical to or different from each other.
Abstract:
An organic light-emitting device comprising: a first electrode; a second electrode facing the first electrode; and an organic layer disposed between the first electrode and the second electrode, wherein the organic layer comprises an emission layer, the emission layer comprises a first host and a dopant, the dopant is an organometallic compound including platinum, the organic light-emitting device satisfies a condition of: HOMO(D)−HOMO(Host 1)≥0.2 electron volts, HOMO(D) is a highest occupied molecular orbital (HOMO) energy level of the dopant in electron volts, HOMO(Host 1) is a HOMO) energy level of the first host in electron volts, and HOMO(D) and HOMO(Host 1) are each measured using a photoelectron spectrometer in an ambient atmosphere.
Abstract:
An organometallic compound represented by Formula 1A: wherein, in Formula 1A, groups and variables are the same as described in the specification.
Abstract:
An organometallic compound represented by Formula 1: M(L1)n1(L2)n2 Formula 1 wherein in Formula 1, M, L1, L2, n1, and n2 are the same as described in the specification.
Abstract:
An organic light-emitting device including a first electrode, a second electrode facing the first electrode, and an emission layer disposed between the first electrode and the second electrode, wherein the emission layer comprises a host and a dopant, wherein the emission layer emits a phosphorescent light, wherein the dopant is an organometallic compound, and wherein the emission layer satisfies certain parameters described in the specification.
Abstract:
An organometallic compound represented by Formula 1: wherein, in Formula 1, groups and variables are the same as described in the specification.
Abstract:
A light-emitting device including an material, wherein KISC/KFL(original) of the emitting material is about 100 or greater, KRISC/KPH(original) of the emitting material is about 100 or greater, KISC/KRISC of the emitting material is about 0.9 or greater and about 1,000 or less, wherein, among all emission components of the emitting material, a ratio of a phosphorescent emission component that is emitted by a radiative transition of a triple exciton to a ground state is 90% or greater, wherein the KISC, the KRISC, the KFL(original), the KPH(original) are the same as described in the specification, and wherein the ratio of the phosphorescent emission component are evaluated from a transient photoluminescence (PL) spectrum per temperature of the emitting material.