Abstract:
A semiconductor device includes a substrate including a first region and a second region that are arranged in a first direction that is parallel to an upper surface of the substrate; a separation layer provided on the first region of the substrate; a high electron mobility transistor (HEMT) device overlapping the separation layer in a second direction that is perpendicular to the upper surface of the substrate; a light-emitting device provided on the second region of the substrate; and a first insulating pattern covering a side surface of the HEMT device, wherein the first insulating pattern overlaps the separation layer in the second direction.
Abstract:
A display apparatus includes a substrate, a light-emitting device provided on the substrate, a driving transistor device configured to control the light-emitting device, a first power supply line electrically connected to a source region of the driving transistor device, a conductive pattern electrically connected to a gate electrode of the driving transistor device, and a second power supply line electrically connected to the first power supply line, wherein the conductive pattern and the first power supply line constitute a first capacitor, and the conductive pattern and the second power supply line constitute a second capacitor, wherein the first capacitor and the second capacitor are connected in parallel.
Abstract:
A semiconductor light emitting diode (LED) and a method of manufacturing the same are provided. The LED includes a first semiconductor layer; a plurality of active elements spaced apart on the first semiconductor layer and each having a width less than a width of the first semiconductor layer; and a second semiconductor layer disposed on the plurality of active elements.
Abstract:
Disclosed are GaN based light emitting devices and methods of manufacturing the same using post-mechanical treatment. The GaN based light emitting device includes first and second electrodes, and a flexible substrate which are sequentially stacked, an n-type GaN layer, an activation layer, and a p-type GaN layer interposed between the first and second electrodes and forming a core-shell structure, and a buried layer interposed between the flexible substrate and the first electrode, wherein the first electrode and the core-shell structure are buried in the buried layer.
Abstract:
A semiconductor light-emitting device includes: a light-emitting stack structure including a first semiconductor layer, an active layer disposed on the first semiconductor layer, and a second semiconductor layer disposed on the active layer; and a first passivation layer disposed on a side surface of the light-emitting stack structure.
Abstract:
A micro light-emitting display apparatus and a method of manufacturing the same are disclosed The micro light-emitting display apparatus includes a first semiconductor layer, an isolation structure provided on the first semiconductor layer and configured to define a plurality of sub-pixels each configured to emit light, a first light-emitting unit including a first active layer provided in a first sub-pixel among the plurality of sub-pixels, and a second semiconductor layer provided on the first active layer, and a second light-emitting unit including a rod semiconductor layer provided in a second sub-pixel among the plurality of sub-pixels, a second active layer provided on the rod semiconductor layer, and a third semiconductor layer provided on the second active layer. The first active layer is configured to emit blue light and the second active layer is configured to emit green light.
Abstract:
A nanorod semiconductor layer having a flat upper surface, a micro-LED including the nanorod semiconductor layer, a pixel plate including the micro-LED , a display device including the pixel plate, and an electronic device including the pixel plate are provided. The nanorod semiconductor layer includes: a main body; and an upper end formed from the main body, wherein the upper end includes: a first inclined surface; a second inclined surface facing the first inclined surface; and a flat upper surface between the first inclined surface and the second inclined surface, and a width of the upper end becomes narrower in an upward direction, and when a length of the upper end protruded from the main body (a thickness of the upper end) is L1, an inclination angle between a surface extending parallel to a surface selected from the first and second inclined surfaces and the flat upper surface is β, and a width of the main body is D, a width D1 of the flat upper surface satisfies Equation 1.
Abstract:
Provided is a light source including a plurality of support layers spaced apart from each other, an ionic crystalline layer on each of the plurality of support layers, a two-dimensional (2D) material layer on the ionic crystalline layer, and a light-emitting device including a first clad layer on the 2D material layer, a width of the first clad layer being greater than a width of the 2D material layer in a horizontal direction, an active layer on the first clad layer, and a second clad layer on the active layer and doped as a second conductive type electrically opposite to a first conductive type.
Abstract:
A light emitting device includes a light emitting rod in which a porous first type semiconductor layer, an active layer, and a second type semiconductor layer are sequentially arranged, and a wavelength conversion cluster is embedded in the porous first type semiconductor layer and configured to convert a first light generated in the active layer into a second light having a different wavelength.
Abstract:
A display apparatus includes a substrate, a light-emitting device provided on the substrate, a driving transistor device configured to control the light-emitting device, a first power supply line electrically connected to a source region of the driving transistor device, a conductive pattern electrically connected to a gate electrode of the driving transistor device, and a second power supply line electrically connected to the first power supply line, wherein the conductive pattern and the first power supply line constitute a first capacitor, and the conductive pattern and the second power supply line constitute a second capacitor, wherein the first capacitor and the second capacitor are connected in parallel.