Abstract:
A display apparatus includes a semiconductor substrate, a transistor, and a light-emitting diode. The transistor is disposed on the semiconductor substrate and uses a portion of the semiconductor substrate as an active layer thereof. The light-emitting diode is disposed on the semiconductor substrate and is electrically connected to the transistor.
Abstract:
An electronic apparatus may include a base layer and a sensing unit disposed on the base layer to sense a touch event. The sensing unit may include touch sensor unit configured to sense a position of the touch event and pressure sensor unit configured to sense a magnitude of the touch event. The touch sensor unit may include a touch sensing pattern including a first transparent electrode layer, a first metal layer, and a first resin layer. The pressure sensor unit may include a pressure sensing pattern including a second transparent electrode layer, a second metal layer, and a second resin layer.
Abstract:
A temperature sensing device, temperature sensor using the same and wearable device having the same. In one aspect, the temperature sensing device includes a first layer formed of a temperature sensing material. The resistance of the temperature sensing material is configured to vary in response to changes in temperature. The temperature sensing device further includes a second layer comprising silver nano-particles and a third layer formed of the temperature sensing material. The second layer is interposed between the first and third layers.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes a stretchable substrate, a unit pixel over the stretchable substrate and including a plurality of emission layers emitting red light, green light, and blue light separately, and a plurality of interconnection lines connected to a corner portion of the unit pixel. The unit pixel has at least four corners, and the interconnection lines are respectively connected to the four corners.
Abstract:
A display apparatus including a substrate; a plurality of unit displays disposed over the substrate, each of the unit displays including a thin film transistor including at least one inorganic layer, a display device electrically connected to the thin film transistor, and a planarization layer between the thin film transistor and the display device; and an encapsulation layer encapsulating the plurality of unit displays, wherein the planarization layer of each of the unit displays includes a spaced area exposing a surface of the at least one inorganic layer between the plurality of unit displays, and wherein the encapsulation layer contacts the at least one inorganic layer in the spaced area.
Abstract:
A stretchable display is disclosed. In one aspect, the stretchable display includes a plurality of pixel substrates arranged in a matrix having row and column directions. Each of the pixel substrates includes an island and a flexible hinge connecting the island to at least one of the adjacent pixel substrates. The island of each of the pixel substrates includes a plurality of first sides and a plurality of second sides. The flexible hinge of each of the pixel substrates includes a plurality of first flexible sub-hinges respectively extending from the first sides in the row direction and a plurality of second flexible sub-hinges respectively extending from the second sides in the column direction.
Abstract:
A piezoelectric device, piezoelectric sensor using the same, and wearable device having the same are disclosed. In one aspect, the piezoelectric device includes a piezoelectric layer formed of a piezoelectric material and a first layer formed above the piezoelectric layer and having a carbon nano-structure.
Abstract:
A display panel includes a substrate, a first display area including first pixels, a second display area located at a corner of the first display area and including second pixels, a third display area located between the first display area and the second display area and including third pixels, first display units, second display units, and third display units, which are disposed on the substrate and correspond to the first to third pixels, respectively, and a driver which provides the first to third display units with an electrical signal, and having a portion of which overlaps the third pixels. Slits cut in a direction toward a corner of the substrate from an inner side of the substrate is defined in the substrate at the corner thereof, and the substrate includes a strip portion between two adjacent slits.
Abstract:
Provided is a manufacturing method of an electronic device, including forming a circuit layer on a base layer, disposing a light emitting element for attachment over the circuit layer, disposing an insulating layer between the light emitting element and the circuit layer, and drying the insulation layer to attach the light emitting element with the insulating layer and the circuit layer.
Abstract:
A display device includes a display panel and a light guide unit. The display panel includes a plurality of display units, and the plurality of display units generates a plurality of display light beams with different wavelengths, respectively. The light guide unit receives the display light beams from the plurality of display units. The light guide unit includes a plurality of input diffraction regions which change traveling directions of the display light beams, respectively, a light guide region that guides the display light beams with the changed traveling directions, and an output diffraction region which directs the guided display light beams to a predetermined direction.