Abstract:
A display panel includes: a substrate; a display element layer including a first organic light-emitting diode having a first emission area, a second organic light-emitting diode having a second emission area, and a third organic light-emitting diode having a third emission area, the first emission area having a long side extending in a first direction and a short side extending in a second direction intersecting the first direction; an encapsulation layer disposed on the display element layer; and a plurality of first light-blocking lines disposed on the encapsulation layer and extending in the first direction, the plurality of first light-blocking lines overlapping the first emission area, the second emission area, and the third emission area.
Abstract:
A display device having improved image quality characteristics including a substrate including a transmission area and an emission area defined by a pixel-defining layer; a display element including a pixel electrode at least partially exposed by the pixel-defining layer, an intermediate layer arranged on the pixel electrode, and an opposite electrode arranged on the intermediate layer; a thin film encapsulation layer arranged on the display element, the thin film encapsulation layer including at least one inorganic encapsulation layer and at least one organic encapsulation layer; and an external light-absorbing layer at least partially overlapping the emission area and arranged on the thin film encapsulation layer.
Abstract:
A display device includes a display panel having a display area and a non-display area. A window is disposed on the display panel. A bezel portion is disposed on the window. The bezel portion at least partially overlaps the non-display area. An adhesive layer is disposed between the display panel and the window. An interlayer is disposed between the bezel portion and the adhesive layer. The interlayer has at least one ultrasound transmitting area overlapping the bezel portion.
Abstract:
A display device includes a display panel having a display area and a non-display area. A window is disposed on the display panel. A bezel portion is disposed on the window. The bezel portion at least partially overlaps the non-display area. An adhesive layer is disposed between the display panel and the window. An interlayer is disposed between the bezel portion and the adhesive layer. The interlayer has at least one ultrasound transmitting area overlapping the bezel portion.
Abstract:
A liquid crystal display apparatus includes a first substrate partitioned into a first region which displays an image and a second region through which external light passes, a second substrate facing the first substrate, a liquid crystal layer between the first substrate and the second substrate, a first polarizer on one side of the first substrate, and a second polarizer on one side of the second substrate, wherein at least one of the first polarizer and the second polarizer includes an opening positioned in the second region.
Abstract:
A thin film transistor substrate, includes: pixels disposed in a display area of the thin film transistor substrate and connected to gate lines and data lines; gate pad parts connected to first ends of the gate lines; first test transistors each being connected to a second end of a corresponding gate line of the gate lines; data pad parts connected to first ends of the data lines; and second test transistors each being connected to a second end of a corresponding data line of the data lines. The gate pad parts, the data pad parts, the first test transistors, and the second test transistors are disposed in a non-display area of the thin film transistor substrate. The first test transistors are configured to be switched to receive a first inspection signal and the second test transistors are configured to be switched to receive a second inspection signal.