Abstract:
A flexible display panel and a method of manufacturing the same. The flexible display panel includes: a flexible panel including a display region and a non-display region, wherein the display region includes an organic light emitting device; a planarization layer disposed on the flexible panel; and a metal-dielectric layer disposed on the planarization layer and including a metal layer and a dielectric layer.
Abstract:
A flexible display apparatus includes a flexible substrate; a display layer on the flexible substrate and including a plurality of pixels; a cover layer which covers the display layer; a heating electrode layer on a surface of the flexible substrate opposite to the display layer, between the flexible substrate and the display layer, between the display layer and the cover layer, or on a surface of the cover layer opposite to the display layer; and a temperature sensing unit configured to sense an external temperature to the flexible display apparatus.
Abstract:
An organic light-emitting display apparatus and a method of manufacturing the same are provided. The organic light-emitting display apparatus includes a substrate, an organic light-emitting device on the substrate, an encapsulation layer covering the organic light-emitting device, and a low adhesive layer covering the encapsulation layer.
Abstract:
A vapor deposition apparatus including a first region including a first injection unit configured to inject a first raw material, and a second region including a second injection unit configured to inject a second raw material, wherein the second injection unit includes a plasma generation unit, wherein the plasma generation unit includes a plasma generator, a corresponding surface surrounding the plasma generator, and a plasma generation space between the plasma generator and the corresponding surface, and wherein the plasma generator has a groove in a lengthwise direction of the plasma generator.
Abstract:
A display device includes a display panel including a light-emitting device to emit light; and an input sensor disposed on the display panel. The input sensor includes a first insulating layer disposed on the display panel; a first conductive layer disposed on the first insulating layer; a second insulating layer covering the first conductive layer; and a second conductive layer disposed on the second insulating layer. At least one of the first and second insulating layers includes a plurality of diffraction patterns arranged to diffract at least a portion of the light provided from the display panel.
Abstract:
A display device includes a display panel including a light-emitting device to emit light; and an input sensor disposed on the display panel. The input sensor includes a first insulating layer disposed on the display panel; a first conductive layer disposed on the first insulating layer; a second insulating layer covering the first conductive layer; and a second conductive layer disposed on the second insulating layer. At least one of the first and second insulating layers includes a plurality of diffraction patterns arranged to diffract at least a portion of the light provided from the display panel.
Abstract:
A head mounted display device according to an exemplary embodiment includes: a case; a display panel that is disposed in the case and is capable of displaying an image; and an optical system between the display panel and a user, wherein the display panel includes a pixel layer that includes a plurality of pixels capable of emitting light and a light blocking layer on the pixel layer and having a plurality of light blocking openings, and the area of a first area where the light blocking layer and the pixel are overlapped with each other in a plane view is gradually increased toward an outer portion of the display panel from a center portion of the display panel.
Abstract:
A flexible substrate includes a polymer substrate. At least a portion of a first barrier region is formed on a neutral plane of the polymer substrate. A top region is formed above the first barrier region. A bottom region is formed below the first barrier region. The first barrier region includes a first inorganic material disposed in at least a portion of a free volume of the polymer substrate. A density of the first inorganic material in the first barrier region is greater than a density of the first inorganic material in the top or bottom regions.
Abstract:
Provided are an organic light-emitting display apparatus and a method of manufacturing the same. The organic light-emitting display apparatus includes a first substrate; an organic light-emitting device provided on the first substrate and including a first electrode, a second electrode, and an intermediate layer positioned between the first electrode and the second electrode; a second substrate covering the organic light-emitting device and disposed to face the first substrate; and a sealant bonding the first substrate and the second substrate, wherein at least a portion of the sealant is a intermixing region which is formed as an inorganic material permeates an organic material.
Abstract:
A display device including: a first body member; a second body member; a hinge coupling the first body member and the second body member; a flexible display panel that is foldable, that is fixed to the first body member and to the second body member, and that is configured to display an image; and a controller configured to: measure a temperature of the flexible display panel; and control the hinge, when the measured temperature is lower than a reference temperature, to: maintain a state in which the first body member and the second body member are folded; or maintain a state in which the first body member and the second body member are unfolded.