Abstract:
A transparent display substrate, a transparent display device, and a method of manufacturing a transparent display device, the substrate including a base substrate including a pixel area and a transmission area; a pixel circuit on the pixel area of the base substrate; an insulation layer covering the pixel circuit on the base substrate; a pixel electrode selectively disposed on the pixel area of the base substrate, the pixel electrode being electrically connected to the pixel circuit at least partially through the insulation layer; and a transmitting layer structure selectively disposed on the transmission area of the base substrate, the transmitting layer structure including at least an inorganic material, the inorganic material consisting essentially of silicon oxynitride.
Abstract:
A transparent display substrate, a transparent display device, and a method of manufacturing a transparent display device, the substrate including a base substrate including a pixel area and a transmission area; a pixel circuit on the pixel area of the base substrate; an insulation layer covering the pixel circuit on the base substrate; a pixel electrode selectively disposed on the pixel area of the base substrate, the pixel electrode being electrically connected to the pixel circuit at least partially through the insulation layer; and a transmitting layer structure selectively disposed on the transmission area of the base substrate, the transmitting layer structure including at least an inorganic material, the inorganic material consisting essentially of silicon oxynitride.
Abstract:
A transparent display device includes a base substrate having a pixel area and a transmission area, a barrier layer disposed on the base substrate, a pixel circuit disposed in the pixel area, a display structure disposed on the pixel circuit, a transmitting structure disposed in the transmission area, an adhesive layer disposed between the base substrate and the barrier layer, and between the base substrate and the transmitting structure, and a transmitting window defined in the transmission area where the transmitting structure may include a composition including silicon oxynitride, the adhesive layer may include aluminum oxide, and the transmitting window may expose a surface of the transmitting structure.
Abstract:
A transparent display substrate, a transparent display device, and a method of manufacturing a transparent display device, the substrate including a base substrate including a pixel area and a transmission area; a pixel circuit on the pixel area of the base substrate; an insulation layer covering the pixel circuit on the base substrate; a pixel electrode selectively disposed on the pixel area of the base substrate, the pixel electrode being electrically connected to the pixel circuit at least partially through the insulation layer; and a transmitting layer structure selectively disposed on the transmission area of the base substrate, the transmitting layer structure including at least an inorganic material, the inorganic material consisting essentially of silicon oxynitride.
Abstract:
A method of manufacturing an organic light emitting display device includes: providing a capacitor on a substrate; providing a protection layer on the capacitor; providing an organic light emitting diode on the protection layer; and providing an encapsulation layer which encapsulates the organic light emitting diode. The providing the capacitor includes: providing a bottom electrode including an oxide semiconductor, on the substrate; providing an insulation layer on the substrate and overlapping the bottom electrode; annealing the bottom electrode to increase a carrier density of the bottom electrode; and providing an intermediate electrode on the insulation layer and overlapping the bottom electrode.
Abstract:
A method of manufacturing a thin-film transistor includes: forming an oxide semiconductor pattern including a first region and a second region on a substrate; forming an insulation film on the substrate to cover the oxide semiconductor pattern; removing the insulation film on the second region through patterning; increasing carrier density of the first region of the oxide semiconductor pattern through an annealing process; forming a gate electrode on the insulation film so that the gate electrode is insulated from the oxide semiconductor pattern and overlaps the second region; and forming a source electrode and a drain electrode to be insulated from the gate electrode and contact the first region.
Abstract:
A backplane includes: a substrate, a pixel electrode, which includes a transparent conductive material, on the substrate, a capacitor first electrode formed on the same layer as the pixel electrode, a first protection layer covering the capacitor first electrode and an upper edge of the pixel electrode, a gate electrode of a thin film transistor (TFT) formed on the first protection layer, a capacitor second electrode formed on the same layer as the gate electrode, a first insulating layer that covers the gate electrode and the capacitor second electrode, a semiconductor layer that is formed on the first insulating layer and includes a transparent conductive material, a second insulating layer covering the semiconductor layer, source and drain electrodes of the TFT that are formed on the second insulating layer, and a third insulating layer that covers the source and drain electrodes and exposes the pixel electrode.
Abstract:
A backplane includes: a substrate, a pixel electrode, which includes a transparent conductive material, on the substrate, a capacitor first electrode formed on the same layer as the pixel electrode, a first protection layer covering the capacitor first electrode and an upper edge of the pixel electrode, a gate electrode of a thin film transistor (TFT) formed on the first protection layer, a capacitor second electrode formed on the same layer as the gate electrode, a first insulating layer that covers the gate electrode and the capacitor second electrode, a semiconductor layer that is formed on the first insulating layer and includes a transparent conductive material, a second insulating layer covering the semiconductor layer, source and drain electrodes of the TFT that are formed on the second insulating layer, and a third insulating layer that covers the source and drain electrodes and exposes the pixel electrode.
Abstract:
An OLED panel may include a substrate including a first region and a second region disposed along a first direction. A plurality of first pixels are disposed in the first region on the substrate, the first pixels each having a first area, the first pixels each comprising a first unit pixel, a second unit pixel disposed along a second direction from the first unit pixel, and a transmission portion disposed along the first direction from the first unit pixel and the second unit pixel. A plurality of second pixels are disposed in the second region on the substrate, the second pixels each having a second area less than the first area, the second pixels each comprising a third unit pixel. The first unit pixel, the second unit pixel, and the third unit pixel may have substantially the same shape as each other.
Abstract:
An OLED panel may include a substrate including a first region and a second region disposed along a first direction. A plurality of first pixels are disposed in the first region on the substrate, the first pixels each having a first area, the first pixels each comprising a first unit pixel, a second unit pixel disposed along a second direction from the first unit pixel, and a transmission portion disposed along the first direction from the first unit pixel and the second unit pixel. A plurality of second pixels are disposed in the second region on the substrate, the second pixels each having a second area less than the first area, the second pixels each comprising a third unit pixel. The first unit pixel, the second unit pixel, and the third unit pixel may have substantially the same shape as each other.