Abstract:
A display device includes a display panel, a driving circuit, and a power supply. The driving circuit is connected to a plurality of pixels of the display panel through a plurality of scan line sets and a plurality of data lines, provides a plurality of scan signals to the display panel, and provides data voltages to the plurality of data lines. The power supply applies one or more power voltages to the plurality of pixels. The driving circuit enables at least two scan signals of the plurality of scan signals during a non-emission interval, partially overlapping the at least two scan signals during at least two consecutive horizontal periods.
Abstract:
A display device includes a scan line extending primarily in a first direction, disposed on a substrate, and transmitting a scan signal, a data line extending primarily in a second direction intersecting the first direction and transmitting a data signal, a driving voltage line extending primarily in the second direction and transmitting a driving voltage, a plurality of transistors including first and second transistors, wherein the second transistor is connected to the scan line and the data line, and the first transistor is connected to the second transistor, a light emitting element connected to the plurality of transistors, and a storage capacitor disposed between the substrate and an active pattern of the first transistor, the storage capacitor including a first electrode disposed on the substrate and a second electrode at least partially overlapping the first electrode. A first insulating layer is disposed between the first and second electrodes.
Abstract:
An organic light emitting diode display including: a substrate; a plurality of first signal lines on the substrate extending in a first direction; a first insulating layer covering the substrate and the first signal lines; a plurality of auxiliary signal lines formed on the first insulating layer and overlapping the first signal lines; a second insulating layer covering the auxiliary signal lines; a plurality of first signal line connecting members formed on the second insulating layer while overlapping parts of the auxiliary signal lines; a plurality of second signal lines crossing the first signal lines; a plurality of switching transistors and a plurality of driving transistors connected with the first signal lines and the second signal lines; and a plurality of organic light emitting diodes electrically connected to the driving transistors, where the first signal line connecting members connect the first signal lines to the auxiliary signal lines.
Abstract:
A display device may include a first pixel coupled to an emission control line, and an emission control stage for selectively coupling the emission control line to a first or second supply voltage line. The emission control stage may include: a first emission control transistor including a first electrode coupled to the first supply voltage line, a second electrode coupled to the emission control line, and a main gate electrode coupled to a first node; a second emission control transistor including a first electrode coupled to the emission control line, a second electrode coupled to the second supply voltage line, and a main gate electrode coupled to a second node; and a third emission control transistor including a first electrode coupled to the first supply voltage line, a second electrode coupled to the first node, a main gate electrode coupled to the second node, and a sub-gate electrode.
Abstract:
A display device including a display panel having a first side including a display area configured to emit light and a second side opposite to the first side, a sensor having a first surface facing the display panel, a first adhesive layer disposed between the first surface of the sensor and the display panel, and a second adhesive layer disposed on a side surface of the sensor, in which the second adhesive layer and the first adhesive layer contact each other.
Abstract:
A display may include flexible substrate, a blocking layer on the flexible substrate, a pixel on the flexible substrate and the blocking layer, and a scan line, a data line, a driving voltage line, and an initialization voltage line connected to the pixel. The pixel may include an organic light emitting diode, a switching transistor connected to the scan line, and a driving transistor to apply a current to the organic light emitting diode. The blocking layer is in an area that overlaps the switching transistor on a plane, and between the switching transistor and the flexible substrate, and receives a voltage through a contact hole that exposes the blocking layer.
Abstract:
A display device may include a first pixel coupled to an emission control line, and an emission control stage for selectively coupling the emission control line to a first or second supply voltage line. The emission control stage may include: a first emission control transistor including a first electrode coupled to the first supply voltage line, a second electrode coupled to the emission control line, and a main gate electrode coupled to a first node; a second emission control transistor including a first electrode coupled to the emission control line, a second electrode coupled to the second supply voltage line, and a main gate electrode coupled to a second node; and a third emission control transistor including a first electrode coupled to the first supply voltage line, a second electrode coupled to the first node, a main gate electrode coupled to the second node, and a sub-gate electrode.
Abstract:
An organic light emitting diode display includes a driving transistor and a compensation transistor. The driving transistor includes a fist gate electrode disposed on a substrate, a polycrystalline semiconductor layer disposed on the first gate electrode of the driving transistor and including a first electrode, a second electrode, and a channel, and a second gate electrode disposed on the polycrystalline semiconductor layer of the driving transistor. The compensation transistor includes a polycrystalline semiconductor layer including a first electrode, a second electrode, and a channel, and a gate electrode disposed on the polycrystalline semiconductor layer of the compensation transistor.
Abstract:
A display device includes an array substrate including a pixel array disposed in a display area, and a fan-out wiring disposed in a peripheral area adjacent to the display area. The fan-out wiring is disposed in a sealing area surrounding the display area. The display device includes a cover substrate combined with the array substrate by a sealing member disposed in the sealing area. The fan-out wiring includes a first fan-out line, a second fan-out line, and a third fan-out line, which are disposed in different layers in a first peripheral area between the display area and the sealing area. The first fan-out line and the second fan-out line are disposed in a same layer in the sealing area, and the first fan-out line and the third fan-out line are disposed in different layers in the sealing area.
Abstract:
An organic light emitting diode display includes a driving transistor and a compensation transistor. The driving transistor includes a first gate electrode disposed on a substrate, a polycrystalline semiconductor layer disposed on the first gate electrode of the driving transistor and including a first electrode, a second electrode, and a channel, and a second gate electrode disposed on the polycrystalline semiconductor layer of the driving transistor. The compensation transistor includes a polycrystalline semiconductor layer including a first electrode, a second electrode, and a channel, and a gate electrode disposed on the polycrystalline semiconductor layer of the compensation transistor.