Abstract:
A display device includes: a processor configured to receive first image data for a display panel from an external system, determine a touch path based on a touch event generated by a touch sensor panel, and output second image data obtained by using the touch path to add overlay data to the first image data; and a control signal generating unit configured to generate a control signal for controlling an operation timing of a gate driver and a data driver, and operate in an interlace mode when the second image data is output to the display panel.
Abstract:
Gamma applied data generating circuit includes motion vector extractor, gamma pattern generator, first gamma applier, second gamma applier, and output converter. Motion vector extractor extracts motion vector of object. Gamma pattern generator generates first gamma pattern corresponding to first motion vector value and second gamma pattern corresponding to second motion vector value from first time point. Value of motion vector is changed from first motion vector value to second motion vector value at first time point. First and second gamma appliers generate first and second data by applying first and second gamma pattern to input data, respectively. Output converter outputs sum of first data times first weight and second data times second weight as gamma applied data. From first time point to second time point, output converter converts first weight from 1 to 0 and converts second weight from 0 to 1.
Abstract:
A display panel includes a gate line extending in a column direction, a data line extending in a row direction, a pixel including a switching transistor connected to the gate line and the data line, and a voltage applier connected to a gate line of a present stage. The voltage applier to apply a voltage after conversion of the gate-on voltage to a gate-off voltage has started. The voltage is closer to the gate-on voltage than the gate-off voltage.
Abstract:
A display device includes gate lines, data lines, first wires and second wires extending in the directions of the gate lines and data lines, and pixels having a first subpixel and a second subpixel each. The first subpixel has a first subpixel electrode and a first switching element, and the second subpixel has a second subpixel electrode and second and third switching elements. The control terminals of the three switching elements are connected to the same gate line, and the input terminals of the first and second switching elements are connected to the same data line. The first and second switching elements have output terminals connected to the first and second subpixel electrodes, respectively. The second switching element's output terminal connects to the third switching element, which has an output terminal connected to a second wire. The first wires and the second wires are connected in a pixel.
Abstract:
A method of driving a display panel includes generating a high data voltage having a high gamma corresponding to a grayscale of input image data, generating a low data voltage having a low gamma less than the high gamma corresponding to the grayscale of the input image data and outputting the high data voltage and the low data voltage to pixels of a display panel. Of the high data voltage and the low data voltage, only the low data voltage is outputted to the pixels of the display panel during at least one frame.
Abstract:
A pixel circuit includes a main-circuit that controls an organic light-emitting element by controlling a driving current to flow into the organic light-emitting element and a sub-circuit including a first compensation transistor including a gate terminal which receives a first gate signal, a second compensation transistor including a gate terminal which receives a second gate signal, and an initialization transistor including a gate terminal which receives an initialization signal. Here, in a low-frequency driving mode, a driving frequency of the first gate signal is N hertz (Hz), a driving frequency of the initialization signal is N Hz, a driving frequency of the second gate signal is M Hz, the first compensation transistor and the initialization transistor are turned on during a first time duration in N non-light-emitting periods per second, and the second compensation transistor is turned on during a second time duration in M non-light-emitting periods per second.
Abstract:
A method of driving a display device includes displaying an image corresponding to a left eye image signal during a first frame set including one or more frames and displaying an image corresponding to a right eye image signal during a second frame set including one or more successive frames, in which the first frame set and the second frame set include at least one frame displaying a first image according to a first gamma curve and at least one frame displaying a second image according to a second gamma curve, and the first frame set and the second frame set include two successive frames displaying the second image.
Abstract:
A liquid crystal display includes first and second sub-pixels charged with the same voltage during a first period. The voltage charged in the second sub-pixel is decreased after the first period. Since the voltage level of the first sub-pixel is different from the voltage level of the second sub-pixel after the first period, liquid crystal molecules disposed corresponding to the first sub-pixel are aligned in a direction different from that of liquid crystal molecules disposed corresponding to the second sub-pixel. Thus, a side viewing angle of the liquid crystal display is improved.
Abstract:
A liquid crystal display panel comprises a backlight unit including an optical assembly and configured to differentiate the liquid crystal display panel into a plurality of blocks and to illuminate light to each of the plurality of blocks; a location sensor configured to sense a location of a user watching the liquid crystal display panel; a backlight controller configured to output a dimming value corresponding to a brightness of each of the plurality of blocks according to a result of sensing by the location sensor; and a backlight driver configured to generate a driving current corresponding to the dimming value of each block and to provide the generated driving current to the backlight unit corresponding to each of the plurality of blocks.
Abstract:
A liquid crystal display includes a signal controller to generate a plurality of start pulse signals based on a plurality of eye blinking signals during a predetermined mode of operation. The start pulse signals are generated in a manner different from a vertical synchronization signal. The start signals may be generated to have an irregular spacing which corresponds to the blinking signals, which may be different from a constant spacing used during display of moving images. The predetermined mode may be a still image mode.