METHOD AND SYSTEM FOR GENERATING A CENTERLINE FOR AN OBJECT, AND COMPUTER READABLE MEDIUM

    公开(公告)号:US20200311485A1

    公开(公告)日:2020-10-01

    申请号:US16827613

    申请日:2020-03-23

    Abstract: Methods and Systems for generating a centerline for an object in an image and computer readable medium are provided. The method includes receiving an image containing the object. The method also includes generating the centerline of the object by tracing a sequence of patches with a virtual agent. For each patch other than the initial patch, the method determines a current patch based on the position and action of the virtual agent at a previous patch. The method further determines a policy function and a value function based on the current patch using a trained learning network, which includes an encoder followed by a first learning network and a second learning network. The learning network is trained by maximizing a cumulative reward. The method also determines the action of the virtual agent at the current patch. Additionally, the method displays the centerline of the object.

    SYSTEM AND METHOD FOR AUTOMATICALLY DETECTING A PHYSIOLOGICAL CONDITION FROM A MEDICAL IMAGE OF A PATIENT

    公开(公告)号:US20190050982A1

    公开(公告)日:2019-02-14

    申请号:US16028389

    申请日:2018-07-05

    Abstract: The present disclosure is directed to a method and system for automatically detecting a physiological condition from a medical image of a patient. The method may include receiving the medical image acquired by an imaging device. The method may further include detecting, by a processor, target objects and obtaining the corresponding target object patches from the received medical image. And the method may further include determining, by the processor, a first parameter using a first learning network for each target object patch. The first parameter represents the physiological condition level of the corresponding target object, and the first learning network is trained by adding one or more auxiliary classification layers. This method can quickly, accurately, and automatically predict target object level and/or image (patient) level physiological condition from a medical image of a patient by means of a learning network, such as 3D learning network.

    Method and device for automatically predicting FFR based on images of vessel

    公开(公告)号:US11495357B2

    公开(公告)日:2022-11-08

    申请号:US17107881

    申请日:2020-11-30

    Abstract: The present disclosure is directed to a method and system for automatically predicting a physiological parameter based on images of vessel. The method includes receiving the images of a vessel acquired by an imaging device. The method further includes determining a sequence of temporal features at a sequence of positions on a centerline of the vessel based on the images of the vessel, and determining a sequence of structure-related features at the sequence of positions on the centerline of the vessel. The method also includes fusing the sequence of structure-related features and the sequence of temporal features at the sequence of positions respectively. The method additionally includes determining the physiological parameter for the vessel at the sequence of positions, by using a sequence-to-sequence neural network configured to capture sequential dependencies among the sequence of fused features.

Patent Agency Ranking