摘要:
An ultra-violet light-emitting diode (LED) array, 12, and method for fabricating same with an AlInGaN multiple-quantum-well active region, 500, exhibiting stable cw-powers. The LED includes a template, 10, with an ultraviolet light-emitting array structure on it. The template includes a first buffer layer, 321, then a second buffer layer, 421, on the first preferably with a strain-relieving layer in both buffer layers. Next there is a semiconductor layer having a first type of conductivity, 500, followed by a layer providing a quantum-well region, 600, with an emission spectrum ranging from 190 nm to 369 nm. Another semiconductor layer having a second type of conductivity is applied next, 800. A first metal contact, 980, is a charge spreading layer in electrical contact with the first layer and between the array of LED's. A second contact, 990, is applied to the semiconductor layer having the second type of conductivity, to complete the LED.
摘要:
The present invention is generally directed to methods of selectively doping a substrate and the resulting selectively doped substrates. The methods include doping an epilayer of a substrate with the selected doping material to adjust the conductivity of either the epilayers grown over a substrate or the substrate itself. The methods utilize lithography to control the location of the doped regions on the substrate. The process steps can be repeated to form a cyclic method of selectively doping different areas of the substrate with the same or different doping materials to further adjust the properties of the resulting substrate.
摘要:
An ultra-violet light-emitting diode (LED) array, 12, and method for fabricating same with an AlInGaN multiple-quantum-well active region, 500, exhibiting stable cw-powers. The LED includes a template, 10, with an ultraviolet light-emitting array structure on it. The template includes a first buffer layer, 321, then a second buffer layer, 421, on the first preferably with a strain-relieving layer in both buffer layers. Next there is a semiconductor layer having a first type of conductivity, 500, followed by a layer providing a quantum-well region, 600, with an emission spectrum ranging from 190 nm to 369 nm. Another semiconductor layer having a second type of conductivity is applied next, 800. A first metal contact, 980, is a charge spreading layer in electrical contact with the first layer and between the array of LED's. A second contact, 990, is applied to the semiconductor layer having the second type of conductivity, to complete the LED.
摘要:
The present invention is generally directed to methods of selectively doping a substrate and the resulting selectively doped substrates. The methods include doping an epilayer of a substrate with the selected doping material to adjust the conductivity of either the epilayers grown over a substrate or the substrate itself. The methods utilize lithography to control the location of the doped regions on the substrate. The process steps can be repeated to form a cyclic method of selectively doping different areas of the substrate with the same or different doping materials to further adjust the properties of the resulting substrate.
摘要:
Novel silicon dioxide and silicon nitride deposition methods are generally disclosed. In one embodiment, the method includes depositing silicon on the surface of a substrate having a temperature of between about 65° C. and about 350° C. The heated substrate is exposed to a silicon source that is substantially free from an oxidizing agent. The silicon on the surface is then oxidized with an oxygen source that is substantially free from a silicon source. As a result of oxidizing the silicon, a silicon oxide layer forms on the surface of the substrate. Alternatively, or in additionally, a nitrogen source can be provided to produce silicon nitride on the surface of the substrate.
摘要:
A vertical geometry light emitting diode with a strain relieved superlattice layer on a substrate comprising doped AlXInYGa1-X-YN. A first doped layer is on the strain relieved superlattice layer AlXInYGa1-X-YN and the first doped layer has a first conductivity. A multilayer quantum well is on the first doped layer comprising alternating layers quantum wells and barrier layers. The multilayer quantum well terminates with a barrier layer on each side thereof. A second doped layer is on the quantum well wherein the second doped layer comprises AlXInYGa1-X-YN and said second doped layer has a different conductivity than said first doped layer. A contact layer is on the third doped layer and the contact layer has a different conductivity than the third doped layer. A metallic contact is in a vertical geometry orientation.
摘要:
An apparatus and method is provided for allowing I/O devices to be shared and/or partitioned among a plurality of processing complexes within the load/store fabric of each of the processing complexes without requiring modification to the operating system or driver software of the processing complexes. The apparatus and method includes a switch for selectively coupling each of the processing complexes to one or more shared I/O devices. The apparatus and method further includes placing information within packets transmitted between the switch and the I/O devices to identify which of the processing complexes the packets are associated with. The invention further includes an apparatus and method within the shared I/O devices to allow the shared I/O devices to service each of the processing complexes independently.
摘要:
An apparatus and method is provided for allowing I/O devices to be shared and/or partitioned among a plurality of processing complexes within the load/store fabric of each of the processing complexes without requiring modification to the operating system or driver software of the processing complexes. The apparatus and method includes a switch for selectively coupling each of the processing complexes to one or more shared I/O devices. The apparatus and method further includes placing information within packets transmitted between the switch and the I/O devices to identify which of the processing complexes the packets are associated with. The invention further includes an apparatus and method within the shared I/O devices to allow the shared I/O devices to service each of the processing complexes independently.
摘要:
An apparatus and method are provided that enable I/O devices to be shared among multiple operating system domains. The apparatus includes a first plurality of I/O ports, a second I/O port, and a plurality of port initialization logic elements. The first plurality of I/O ports is coupled to a plurality of operating system domains through a load-store fabric. Each of the first plurality of I/O ports routes transactions between the plurality of operating system domains and the switching apparatus. The second I/O port is coupled to a first shared input/output endpoint. The first shared input/output endpoint is configured to request/complete the transactions for each of the plurality of operating system domains. One of the plurality of port initialization logic elements is coupled to the second I/O port and remaining ones of the plurality of port initialization logic elements are each coupled to a corresponding one of the first plurality of I/O ports. The plurality of port initialization logic elements is configured to initialize corresponding links between each of the plurality of operating system domains and the switching apparatus, and between the first shared input/output endpoint and the switching apparatus, to support the transactions, where each of the plurality of port initialization logic elements automatically configures a corresponding polarity for each of the first plurality of I/O ports and the second I/O port, and where the corresponding polarity is in a default polarity prior to being configured.
摘要:
A processor includes controller circuitry operative to control performance monitoring for at least one flow of cells or other protocol data units (PDUs) received by the processor. The controller circuitry includes a classifier and is operative to access memory circuitry associated with the processor. The classifier is configured to perform at least a first pass classification of at least a subset of the PDUs. The controller circuitry in conjunction with a first pass classification of a PDU of a first type is operative to execute a first script, and in conjunction with a first pass classification of a PDU of a second type is operative to execute a second script different than the first script. A result of execution of at least one of the first and second scripts is stored in the memory circuitry. A performance monitoring output is generated, responsive to receipt of the protocol data unit of the second type, based at least in part on the result of execution of at least one of the first and second scripts. The performance monitoring output may be generated in conjunction with a second pass classification of the PDU of the second type, upon execution of an additional function or other type of script.