Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus configures a first downlink (DL) control channel for a user equipment (UE) being served by the first transmission point, the configuration facilitating decoding of the first DL control channel by at least one UE being served by a second transmission point, and transmits the first DL control channel.
Abstract:
Improvements to signaling procedures for use in physical random access channel (PRACH)-based proximity detection are disclosed. Signaling and signaling processes from a serving base station may trigger a more efficient and reliable transmission of PRACH from related user equipment (UE). At the dynamic power nodes (DPNs) monitoring for such PRACH-based proximity, features are disclosed which establish neighbor lists for more efficient management of detection and proximity activation.
Abstract:
A method for determining channel quality estimates of two or more types of subframes, such as clean and unclean subframes, may be applicable to both legacy and newer user equipment. A first base station affects a channel quality measurement by either transmitting dummy signals over designed tones that correspond to a second base station, or by puncturing transmissions during designated tones that correspond to the second base station.
Abstract:
A method of wireless communication is presented. The method includes signaling a first number of channel state information-reference signal (CSI-RS) ports corresponding to resource elements (REs) and a second number of virtual antenna ports, the second number being less than or equal to the first number. The method also includes transmitting CSI-RS on each virtual antenna port, the CSI-RS mapped to at least a portion of the REs.
Abstract:
Improvements to signaling procedures for use in physical random access channel (PRACH)-based proximity detection are disclosed. Signaling and signaling processes from a serving base station may trigger a more efficient and reliable transmission of PRACH from related user equipment (UE). At the dynamic power nodes (DPNs) monitoring for such PRACH-based proximity, features are disclosed which establish neighbor lists for more efficient management of detection and proximity activation.
Abstract:
A method for providing multi-hypothesis channel quality indicator (MH-CQI) feedback is described. Hypotheses corresponding to rank indicator (RI) and precoding matrix indicator (PMI) assumptions associated with a dominant interferer are selected. Multi-hypothesis channel quality indicator (MH-CQI) values based on the selected hypotheses are generated. The multi-hypothesis channel quality indicator (MH-CQI) values are encoded. The multi-hypothesis channel quality indicator (MH-CQI) values are sent as feedback.
Abstract:
A method for providing multi-hypothesis channel quality indicator (MH-CQI) feedback is described. Hypotheses corresponding to rank indicator (RI) and precoding matrix indicator (PMI) assumptions associated with a dominant interferer are selected. Multi-hypothesis channel quality indicator (MH-CQI) values based on the selected hypotheses are generated. The multi-hypothesis channel quality indicator (MH-CQI) values are encoded. The multi-hypothesis channel quality indicator (MH-CQI) values are sent as feedback.
Abstract:
Techniques are provided for channel discovery. For example, there is provided a method operable by a mobile entity that may involve measuring beacon signals associated with the network. In one approach, the method may involve, in response to detecting an Authorized Shared Access (ASA) beacon signal on a frequency common to each network entity on a given ASA channel, extracting frequency information from the ASA beacon signal, wherein the ASA beacon signal comprises a single frequency network (SFN) beacon signal. In another approach, the method may involve, in response to detecting an ASA beacon signal on a frequency common to each network entity on a given ASA channel, extract frequency information from the ASA beacon signal, wherein timing correlates with an operating frequency for the ASA beacon signal.
Abstract:
A method for determining channel quality estimates of two or more types of subframes, such as clean and unclean subframes, may be applicable to both legacy and newer user equipment. A first base station affects a channel quality measurement by either transmitting dummy signals over designed tones that correspond to a second base station, or by puncturing transmissions during designated tones that correspond to the second base station.
Abstract:
Certain aspects of the present disclosure provide various mechanisms that allow a user equipment to convey information regarding one or more attributes to a base station during a random access (RA) procedure. The attributes may include, for example a capability of the UE (e.g., to support a particular feature or version of a standard) or a condition of the UE (e.g., if it is currently experiencing an interference condition).