Abstract:
Certain aspects relate to methods and apparatus for reducing interference in a heterogeneous network. Certain aspects relate to methods and apparatus for delinking downlink and uplink resource partitioning in a heterogeneous network. In aspects, the delinking is accomplished by reliably delivering uplink grant to a UE, e.g., pico UE in a pico CRE region, without using downlink Almost Blank Subframe (ABS) resources in which an interfering cell limits transmission to reduce interference to other victim cells. In techniques, instead of using the regular PDCCH sent in downlink ABS resources for uplink grant transmission, the uplink grant is sent on another more reliable downlink control channel using resources configured to avoid interference with transmissions from an interfering base station. In techniques, the DL grant is sent on PDCCH in non-downlink ABS resources, but the UE employs enhanced UE capabilities (e.g., interference cancellation) to process the received control information.
Abstract:
Methods and apparatuses are provided that include mitigating interference for devices communicating with femto nodes or other low power base stations by assigning protected resources for communicating therewith. The protected resources can be negotiated with a macrocell base station using interference cancellation. The protected resources can be assigned based on an early or late handover event, which can indicate that the device may be susceptible to interference from the macrocell base station.
Abstract:
Systems and methodologies are described that facilitate selectively and simultaneously establishing multiple bearers in wireless communication networks. A core network entity in a wireless network can transmit a bearer establishment request to an access point comprising a list of bearers to establish with a related mobile device. The bearer establishment request comprising list of bearers includes separate non-access stratum (NAS) messages corresponding to each bearer in the list. The separate NAS messages can be linked to each bearer entry in the list. The access point can receive the list and attempt to initialize one or more radio bearers in the list. Since the NAS messages individually correspond to a given bearer, the access point can forward NAS messages to the mobile device only for bearers that are successfully initialized allowing selective establishment thereof. In addition, the access point can provide initialization status for the individual bearers to the core network.
Abstract:
Interference issues between wireless network devices are mitigated. An evolved node B (eNodeB) may experience higher cell load or higher interference when serving user equipment (UEs) that are operating in an cell range extension (CRE) area in which the UEs are strongly affected by aggressor eNodeBs. An eNodeB experiencing higher cell load or serving user equipments (UEs) under higher interference generally requests an interfering/aggressor eNodeB to repartition some of its resources. Repartitioning of resources, however, may have a negative impact on the eNodeB serving CRE area UEs. In one aspect, a new measurement of utilization accounts for CRE status and differentiates between protected and unprotected resources, such as subframes.
Abstract:
Systems and methodologies are described that facilitate selectively and simultaneously establishing multiple bearers in wireless communication networks. A core network entity in a wireless network can transmit a bearer establishment request to an access point comprising a list of bearers to establish with a related mobile device. The bearer establishment request comprising list of bearers includes separate non-access stratum (NAS) messages corresponding to each bearer in the list. The separate NAS messages can be linked to each bearer entry in the list. The access point can receive the list and attempt to initialize one or more radio bearers in the list. Since the NAS messages individually correspond to a given bearer, the access point can forward NAS messages to the mobile device only for bearers that are successfully initialized allowing selective establishment thereof. In addition, the access point can provide initialization status for the individual bearers to the core network.
Abstract:
A method and apparatus are for communication in a wireless network in which a User Equipment (UE) associated with a first evolved Node B (eNB) experiences interference from a second eNB. The method includes negotiating by the first eNB of the wireless network with a second eNB of the wireless network for a partitioning of subband resources on an uplink. A first subset of subband resources is assigned to the first eNB, and a second subset of subband resources is assigned to the second eNB. A method and apparatus are for communication in a wireless network. The method includes decoding a downlink control channel received during a protected downlink subframe to determine an uplink subframe n containing a protected subband for uplink transmission. The method also includes transmitting data during the uplink subframe n on the protected subband.
Abstract:
Methods and apparatus for performing radio resource management (RRM) measurements in a heterogeneous network (HetNet) are provided in an effort to prevent failure of RRM measurement procedures in a dominant interference scenario. Several alternatives are provided for determining particular resources (e.g., subframes) to use for performing the RRM measurements, wherein the particular resources are based on cooperative resource partitioning between cells of the HetNet, wherein the cells may be of different types (e.g., macro, pico, or femto cells). These alternatives include, for example: (1) intra-frequency or intra-RAT (radio access technology) alternatives, which may involve transmitting resource partitioning information (RPI) in or deriving non-serving cell RPI based on the serving cell's RPI, as well as (2) inter-frequency or inter-RAT alternatives, where the RRM measurements may be performed during a measurement gap.
Abstract:
Certain aspects of the present disclosure provide various mechanisms that allow a user equipment to convey information regarding one or more attributes to a base station during a random access (RA) procedure. The attributes may include, for example a capability of the UE (e.g., to support a particular feature or version of a standard) or a condition of the UE (e.g., if it is currently experiencing an interference condition).
Abstract:
Mobile devices may receive page transmissions that include information related to a service for which the mobile device is being paged. The mobile device may be provided with a policy that describes a priority of radio access technologies (RATs) based on the type of service for which the mobile device is being paged. The mobile device, based at least in part on the service information, may access one or more of the wireless communications networks based on the identified service and/or based on the policy. A page transmission may include an indication of a RAT that is to be used for the page response and/or an index into the policy. A base station that transmits a page transmission may include an identifier of a particular network that is to be accessed in response to the page.
Abstract:
Mobile devices may be paged via non-cellular or cellular radio access technologies (RATs). Mobile devices may determine that they are capable of receiving a paging message via a non-cellular RAT, and they indicate to a network that they are capable of such paging. Accordingly, in addition to cellular paging, mobile devices may be paged for cellular or non-cellular data via a non-cellular RAT. Non-cellular paging may be facilitated by a non-cellular paging server, which may be an independent network-side entity or may be an aspect of another network entity, such as an mobility management entity (MME).