Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. An apparatus, e.g., user equipment (UE), receives a reporting requirement for one or more Multicast-Broadcast Single Frequency Network (MBSFN) physical layer parameters. The UE obtains the one or more MBSFN physical layer parameters including at least one parameter corresponding to a reference signal, and creates a report based on the obtained one or more MBSFN physical layer parameters. The UE may obtain the one or more MBSFN physical layer parameters using user-plane or control-plane based mechanisms. The user-plane mechanism involves the use of a modified version of the reporting mechanism for Quality of Experience (QoE) metrics. The control-plane mechanism involves the use of a modified version of the reporting mechanism for the Minimization of Drive Tests (MDT) metrics.
Abstract:
Embodiments include systems and methods for managing tune-way in a multi-subscription communication device. A processor of a multi-subscription communication device may determine a first signal strength of a first cell signal and a second signal strength of a second cell signal. The processor may perform a tune-away procedure to a weaker of the first cell signal and the second cell signal. Embodiments may include determining signal strengths of each component carrier of the first cell signal and the second cell signal.
Abstract:
Techniques are provided for a broadcast client of a wireless communication network. A method may include receiving broadcast content via broadcast delivery on a first resource associated with a first set of carriers. The method may include determining, during unicast idle mode, a second set of carriers comprising neighbor carriers in a current cell. The method may include modifying handoff priorities of the first set of carriers and the second set of carriers based on membership of each carrier in a common set of carriers comprising the first and second sets of carriers and further based on a priority order specified by the wireless communication network. The method may include determining whether to hand over to at least one carrier in one of the first and second sets of carriers based on a handoff decision that takes into account the modified handoff priorities.
Abstract:
Diversity enhancement for multiple carrier systems is disclosed which includes generation of a multiplexed multicarrier radio frequency (RF) signal having N carriers organized to be accessed at a rate of one carrier access per multicast channel (MCH) scheduling period (MSP) per carrier of the N carriers, thereby requiring N accesses per MSP duration across the N carriers. The method may also include the base station transmitting the RF signal to a user equipment (UE). In other aspects, the diversity enhancements include the UE receiving a multiplexed multicarrier RF signal having N carriers. The UE may access the N carriers by performing one carrier access per MSP per carrier of the N carriers, thereby performing N accesses per MSP duration across the N carriers.
Abstract:
A user equipment (UE) acquires a time of a first cell of a first RAT and receives instructions to handover from a source RAT to the first cell of a first target RAT. The handover is delayed based on the acquired timing and the UE communicates on the source RAT during the delay.
Abstract:
A method adaptively adjusts an internal clock rate and/or supply voltage based on an indication from a scheduling channel. A UE determines whether high speed data has been scheduled. The UE adjusts the clock speed and/or supply voltage based on the determination.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In a first configuration, the apparatus is an eNB. The eNB configures a UE with aggregated carriers including a primary carrier from a primary cell and one or more secondary carriers from one or more secondary cells. In addition, the eNB sends, with the configuration, SIB13 information for at least one secondary cell of the one or more secondary cells from the primary cell. In a second configuration, the apparatus is a UE. The UE receives a configuration with aggregated carriers including a primary carrier from a primary cell and one or more secondary carriers from one or more secondary cells. In addition, the UE receives, with the configuration, SIB13 information for at least one secondary cell of the one or more secondary cells from the primary cell.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a user service description (USD) message. When a frequency indicated in the USD message is not a current frequency, the apparatus determines that a system information message is received, determines that the frequency indicated in the USD message is included in the system information message, determines that the frequency is a neighboring cell frequency, sets a priority of the frequency to a highest priority, and measures a signal strength of the frequency when the frequency is included in the system information message, performs a cell reselection determination procedure based on the signal strength of the frequency, performs cell reselection to the neighboring cell based on a result of the cell reselection determination procedure, and acquires the multicast service in the neighboring cell on the frequency.
Abstract:
Certain aspects of the present disclosure generally relate to methods and apparatus for enhancement of replay protection between receivers and transmitters from third party interveners in wireless communication systems. One example method generally includes transmitting one or more packets, wherein each of the packets comprises an indication of a packet number associated with that packet; determining that a condition has been met or exceeded; and based on the determination, transmitting a message indicating a packet number increase. Another example method generally includes receiving a first packet comprising an indication of a first packet number; receiving a message indicating a packet number increase; updating a packet number window based on the packet number increase; after the updating, receiving a second packet comprising an indication of a second packet number; and discarding at least a portion of the second packet if the second packet number is outside the packet number window.
Abstract:
Methods, systems, and devices for wireless communications are described. In some systems, a user equipment (UE) may transmit assistance information to a base station to request an update or a modification to one or more communication parameters configured at the UE. Such communication parameters may include a quantity of uplink multiple-input multiple-output (MIMO) layers, a quantity of downlink MIMO layers, a minimum scheduling offset, a maximum quantity of component carriers, or a maximum aggregated bandwidth for a secondary cell group (SCG). In some implementations, the UE may transmit the assistance information requesting the update or modification to one or more of such communication parameters based on detecting that the UE satisfies one or more triggering conditions or thresholds.