Abstract:
An Encoder Assisted Frame Rate Up Conversion (EA-FRUC) system that utilizes video coding and pre-processing operations at the video encoder to exploit the FRUC processing that will occur in the decoder in order to improve compression efficiency and reconstructed video quality is disclosed. One operation of the EA-FRUC system involves determining whether to encode a frame in a sequence of frames of a video content by determining a spatial activity in a frame of the sequence of frames; determining a temporal activity in the frame; determining a spatio-temporal activity in the frame based on the determined spatial activity and the determined temporal activity; determining a level of a redundancy in the source frame based on at least one of the determined spatial activity, the determined temporal activity, and the determined spatio-temporal activity; and, encoding the non-redundant information in the frame if the determined redundancy is within predetermined thresholds.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. An apparatus, e.g., user equipment (UE), receives a reporting requirement for one or more Multicast-Broadcast Single Frequency Network (MBSFN) physical layer parameters. The UE obtains the one or more MBSFN physical layer parameters including at least one parameter corresponding to a reference signal, and creates a report based on the obtained one or more MBSFN physical layer parameters. The UE may obtain the one or more MBSFN physical layer parameters using user-plane or control-plane based mechanisms. The user-plane mechanism involves the use of a modified version of the reporting mechanism for Quality of Experience (QoE) metrics. The control-plane mechanism involves the use of a modified version of the reporting mechanism for the Minimization of Drive Tests (MDT) metrics.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which at least one bit rate for allocating network resources from a broadcast-multicast service center (BM-SC) is received. The network resources are then allocated based on the at least one bit rate. Moreover, all evolved Node Bs (eNBs) in a broadcast/multicast area are informed of the network resource allocation. Additionally, the network resources are allocated for a session based on a first bit rate, wherein the first bit rate is greater than a guaranteed bit rate (GBR), and the network resource allocation is adjusted to a second bit rate based on the occurrence of an event, wherein the second bit rate is equal to GBR.
Abstract:
In a first configuration, a UE receives, from a service provider, a certificate authority list. The certificate authority list is at least one of integrity protected or encrypted based on a credential known by the UE and the service provider and stored on a smartcard in the UE. The UE authenticates a server using the received certificate authority list. In a second configuration, the UE receives a user service discovery/announcement including a reception report configuration and an address of a server. The UE sends a protected reception report to the server based on the reception report configuration. In a third configuration, the UE receives a protected broadcast announcement and communicates based on the broadcast announcement. The broadcast announcement is at least one of integrity protected or encrypted based on a credential known by the UE and stored on a smartcard in the UE.
Abstract:
In a first configuration, a UE receives, from a service provider, a certificate authority list. The certificate authority list is at least one of integrity protected or encrypted based on a credential known by the UE and the service provider and stored on a smartcard in the UE. The UE authenticates a server using the received certificate authority list. In a second configuration, the UE receives a user service discovery/announcement including a reception report configuration and an address of a server. The UE sends a protected reception report to the server based on the reception report configuration. In a third configuration, the UE receives a protected broadcast announcement and communicates based on the broadcast announcement. The broadcast announcement is at least one of integrity protected or encrypted based on a credential known by the UE and stored on a smartcard in the UE.
Abstract:
A method, an apparatus, and a computer program product are provided for receiving unicast and multicast-broadcast single frequency network (MBSFN) signals from an eNB in a subframe. The apparatus receives at least one transmission in the subframe, the subframe divided into six partitions and for receiving at least one unicast symbol and a plurality of multicast-broadcast single frequency network (MBSFN) symbols, each of the at least one unicast symbol and the plurality of MBSFN symbols having an associated cyclic prefix (CP). The apparatus further receives at least one unicast signal including the at least one unicast symbol at a first partition of the subframe, and receives at least one MBSFN signal including the plurality of MBSFN symbols respectively at a second partition through sixth partition of the subframe, each MBSFN symbol having the associated CP with a length of at least 33.33 μs.
Abstract:
An example device for processing media data includes one or more processors configured to receive a file including media data, determine that a portion of the file is potentially erroneous, form error-indicative data indicating that the file includes the portion that is potentially erroneous, and store the file and the error-indicative data to a location available to a target application for the media data of the file. Another example device includes one or more processors configured to receive a file including media data, receive a first set of information indicative of one or more removable portions of the file that can be removed from the file, receive a second set of information indicative of a suspect portion of the file, determine one or more of the removable portions that completely overlap the suspect portion, and remove the determined one or more removable portions from the file.
Abstract:
Techniques are provided for managing simultaneous unicast and multicast/broadcast services. For example, there is provided a method operable by a user equipment (UE) or the like, that involves transmitting, upon initial connection with a wireless communication system, a first message indicating one or more capabilities of the UE. The method may further involve transmitting a second message indicating that the UE is receiving or is about to receive a multicast/broadcast service. The method may also involve receiving, as a result of the second message, data scheduled in accordance with one or more predetermined rules.
Abstract:
Diversity enhancement for multiple carrier systems is disclosed which includes generation of a multiplexed multicarrier radio frequency (RF) signal having N carriers organized to be accessed at a rate of one carrier access per multicast channel (MCH) scheduling period (MSP) per carrier of the N carriers, thereby requiring N accesses per MSP duration across the N carriers. The method may also include the base station transmitting the RF signal to a user equipment (UE). In other aspects, the diversity enhancements include the UE receiving a multiplexed multicarrier RF signal having N carriers. The UE may access the N carriers by performing one carrier access per MSP per carrier of the N carriers, thereby performing N accesses per MSP duration across the N carriers.
Abstract:
Extended duration cyclic prefixes with lower overhead are disclosed in which an integer multiple sequence of carriers above the nominal 300 carrier-per-25 resource blocks (RBs) definition are selected to reduce the cyclic prefix overhead below the normative 20%. Sets of durations are then provided associated with each such integer multiple sequence of carriers that allow for the combined duration of the symbol duration and extended duration cyclic prefix to result in an integer number of carriers for each RB.